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ABSTRACT

Quantum computers are expected to be the next-generation computers in various fields. Quantum computers are
different from classical computers, which store the current binary information of 0 and 1. Quantum computers can
use quantum superposition, which can hold 0 to 1 probability as continuous quantities in one qubit. Therefore,
existing algorithms are not necessarily efficient computational algorithms on quantum computers. GPU-based
quantum simulations, such as cuQuantum, have recently been released to develop quantum algorithms. This
paper focuses on quantum image processing, presents how far quantum image processing can be efficiently
described today and verifies on GPUs that multiple image processing can be described using cuQuantum.
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1. INTRODUCTION

The quantum computer that uses the quantum superposition property1 is expected to be the next generation
computer in various fields.2,3 While classical computers could only take digital bits (0 or 1), quantum comput-
ers can use qubits (i.e., quantum superposition state), which have a coherent superposition of multiple states
simultaneously until it is measured.

Then, it can probabilistically take either 0 or 1 by observation. By using these qubits to perform a large
number of calculations in parallel, the computing speed of a quantum computer can be significantly faster than
that of a classical computer. While classical computers use SIMD and multi-core threading,4 tiling5 and pipeline
burst cache pipelining,6 GPUs and Tensor Cores7 for parallel computing.

Due to superposition for parallel computing, existing algorithms are not necessarily efficient computational
algorithms on a quantum computer, requiring a new discussion of quantum algorithms. Due to the lack of
easy access to quantum computers, the superiority of quantum computers over classical computers (quantum
supremacy) could only be demonstrated in a limited number of applications, such as combinatorial optimization
problems and prime factorization. However, around 2020, quantum simulators8 are accelerated by GPUs, such as
NVIDIA’s cuQuantum and Microsoft’s Azure Quantum, and then we can develop quantum algorithms without
the need for quantum computers.

In this paper, we focus on image processing using a quantum computer (i.e., quantum image processing).9–11

Quantum image processing is also at the beginning stage of research on quantum image representation and
quantum image processing algorithms, which include how to realize simple processes such as edge detection12 and
how to store grayscale and color images in qubits.13 Quantum image representation14 has various forms: qubit
lattice,15 entangled image,16 real ket,17 flexible representation of quantum images (FRQI),18 novel enhanced
quantum representation of digital images (NEQR).19 We use three representations, qubit lattice, FRQI, and
NEQR, to show examples of image processing.
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2. PRELIMINARY

2.1 Quantum states

A single qubit is a basic unit of quantum information handled by a quantum computer, and the quantum state
|ψ1⟩ of one qubit is represented by a linear combination of |0⟩ and |1⟩ with two complex numbers α and β as
in (1). The qubit |ψ1⟩ represents the superposition between 0 and 1 by these complex numbers α and β, called
probability amplitudes or complex probability amplitudes. The probability of sampling 0 is |α|2, and for 1, |β|2.

|ψ1⟩ = α

(
1
0

)
+ β

(
0
1

)
= α |0⟩+ β |1⟩ (α, β ∈ C, |α|2 + |β|2 = 1) (1)

2.2 Quantum gates

While logical gates in a classical computer refer to a logic circuit that performs basic logic operations such as
AND and OR operations, quantum gates replace conventional gates with ones with quantum characteristics.

Because of the constraint that the probability amplitude of a qubit satisfies the normalization condition even
after applying a quantum gate, the quantum gate is mathematically represented by a unitary matrix.

The gates used in this paper are the Hadamard gate (H), phase shift gate (Rm), controlled X gate (CX),
and Fredkin gate (F ), shown below as matrices and the quantum gate symbols are shown in Fig 1. Here, |c⟩
represents the control bit, which switches whether the quantum gate is applied. |t⟩ denotes the target bit, which
is the qubit to which the quantum gate is applied. When the control bit is |0⟩, nothing is done to the target bit,
and when |1⟩, the specified quantum gate is applied to the target bit.

H =
1√
2

[
1 1
1 −1

]
, Rm =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 ei
2π
2m

 ,

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , F =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


. (2)

The Hadamard gate H produces a quantum superposition such that H |0⟩ = 1√
2
(|0⟩ + |1⟩). The phase shift

gate Rm is a 2-input 2-output quantum gate with one control bit and one target bit as inputs, which changes
the phase of the target bit by 2π

2m when |c⟩ = |1⟩. The controlled X gate CX is a 2-input 2-output quantum gate
with one control bit and one target bit as inputs, which inverts the target bit from the state |t⟩ = |0⟩ to |t⟩ = |1⟩
when |c⟩ = |1⟩. The Fredkin gate F is a three-input, three-output quantum gate with one control bit and two
target bits as inputs, which swaps the quantum states of the two target bits from the states of |t1⟩ = |0⟩ and
|t2⟩ = |1⟩ to |t1⟩ = |1⟩ and |t2⟩ = |0⟩ when |c⟩ = |1⟩.

2.3 Qubit lattice

Qubit latice15 is an early quantum image representation proposed by Venegas-Andraca in 2003, which does not
use spatial quantum superposition or other quantum properties. Instead, the image is represented by mapping
the probability amplitude of a single qubit to each pixel value. Therefore, the qubit lattice format requires
the same number of qubits as pixels. The pixel value of the ith row and jth column in the classical image
representation is represented in qubit lattice as follows.

|pixeli,j⟩ = cos

(
θi,j
2

)
|0⟩+ sin

(
θi,j
2

)
|1⟩ , 0 ≤ θi,j ≤ π (3)
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Figure 1: Quantum gate notations.

2.4 FRQI

Le et al. extended the qubit lattice to FRQI,18 representing the pixel value and position by the quantum
superposition. Similar to qubit lattice, pixel values are represented by a single qubit cos θi

2 |0⟩+sin θi
2 |1⟩ and the

corresponding pixel position is represented by a qubit |i⟩. The two pieces of information are represented using
qubits, and the image is represented by taking the tensor product ⊗. The image representation using FRQI is
formulated as follows

|I⟩ = 1

2n

22n−1∑
i=0

(
cos

θi
2
|0⟩+ sin

θi
2
|1⟩

)
⊗ |i⟩ , 0 ≤ θi ≤ π (4)

The FRQI representation is a direct development of flexible representation for quantum color image (FRQCI)20

and improved FRQI (IFRQI).21 In addition, Sovel edge detection22 and global and local image shifting23 are
presented.

2.5 NEQR

Zhang et al. proposed a quantum image representation called NEQR19 that further extends FRQI. Like FRQI,
this representation format focuses on pixel values and their corresponding positions. Unlike FRQI, it uses multiple
qubits to represent pixel values. When the maximum pixel value is represented by 2d, that is, when the pixel
value can be represented as C0

xC
1
x . . . C

d−1
x in binary representation, the image can be represented using NEQR

as follows.

|I⟩ = 1

2n

22n−1∑
x=0

|f(x)⟩ |x⟩ , f(x) = C0
xC

1
x...C

d−1
x . (5)

NEQR has evolved into improved NEQR (INEQR),24 generilized model of NEQR (GNEQR),25 etc. In addtion,
edge detection,26 feature extruction,27 and color representation28 are presented.

2.6 Quantum Fourier transform

The Fourier transform is an important image processing operation, and the quantum Fourier transform (QFT)29

corresponds to the quantum properties of the Fourier transform. The fast Fourier transform (FFT) of a classical
computer has O(N logN) order, whereas the QFT can be calculated in O(log2N). QFT is used in various
quantum algorithms, and it can be realized by constructing a quantum circuit as shown in Fig. 2 using two



Figure 2: Quantum circuit for QFT.

quantum gates: a Hadamard gate H and a phase shift gate Rm. However, since this circuit outputs an inverted
bit order, a swap gate must be added at the end of the quantum circuit to correct the bit order. Various frequency
transforms have also been realized, such as the quantum Haar wavelet transform and the quantum Hadamard
transform.30

3. QUANTUM IMAGE PROCESSING WITH VARIOUS QUANTUM IMAGE
REPRESENTATIONS

3.1 Thresholding with qubit lattice

Because qubit lattice represents images without using spatial superposition, it can only perform simple operations
such as rotation manipulation on a single qubit. In this section, we consider the binarization process to be realized
by performing rotation operations per a qubit. The output value is determined by comparing the pixel value c
and the threshold value r, as in the binarization process on a classical computer. When sampling is performed,
the probability amplitude of the qubit must be manipulated to obtain a high probability value according to the
result of the thresholding process since the qubit outputs 0 and 1 values probabilistically due to its characteristics.
Therefore, we define a quantum gate R for rotation manipulation as follows for each case of c < r and r ≤ c, and
apply this quantum gate to bias the probability amplitude to obtain a value with high probability according to
the threshold processing result at sampling.

R =



[
cos π

4 − sin π
4

sin π
4 cos π

4

]
(r ≤ c)

[
cos (−π

4 ) − sin (−π
4 )

sin (−π
4 ) cos (−π

4 )

]
(c < r)

(6)

3.2 QFT with FRQI

FRQI maps pixel values to a single qubit probability amplitude. If each pixel value is placed as Ck and the pixel
position is represented by |k⟩, the image is represented as follows.

|I⟩ =
2n−1∑
k=0

Ck |k⟩ =
[
C0 C1 C2 · · · Ck

]T
(7)

FRQI can represent the entire image as a superposition of qubits |I⟩, which is suitable for the same processing on
the entire image. In this paper, we implement QFT in FRQI to process the whole image. The following matrix



|𝟎⟩

|𝒃⟩

|𝒂⟩ |𝒂⟩

|𝒃⟩

|𝑿𝑶𝑹⟩

(a) XOR gate

|𝟎⟩

|𝒃⟩

|𝒂⟩ |𝒂⟩

|𝒃⟩

|𝑿𝑶𝑹⟩

XOR

(b) abstructed XOR gate

Figure 3: XOR quantum circuit.
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Figure 4: Quantum circuit for thresholding with NEQR.

can represent the size-N QFT.

QFTN =
1√
N



1 1 1 1 · · · 1

1 WN W 2
N W 3

N · · · WN−1
N

1 W 2
N W 4

N W 6
N · · · W

2(N−1)
N

1 W 3
N W 6

N W 9
N · · · W

3(N−1)
N

...
...

...
...

. . .
...

1 WN−1
N W

2(N−1)
N W

3(N−1)
N · · · W

(N−1)(N−1)
N


, WN = ei

2π
N (8)

3.3 Threshoding with NEQR

NEQR uses multiple qubits to represent pixel values. Therefore, more complex qubit manipulations are possible
than with qubit lattice and FRQI, which increases the implementation variety of image processing algorithms.
The thresholding is also performed with NEQR to confirm the possibility of the complex operations.

We consider the representation of a grayscale pixel value in NEQR with 8 qubits. First, we show that the
XOR gate used for processing can be constructed using two controlled X gates and one auxiliary qubit. As
shown in Fig. 3(a), |a⟩ and |b⟩ can be used as control bits, and the auxiliary qubits can be used as target bits to
obtain the XOR result of |a⟩ and |b⟩ by acting two control X gates. The XOR circuit is abbreviated as shown in
Fig. 3(b) in the following. Next, the binarization procedure is described. The quantum circuit shown in Fig.4(a)
determines whether the pixel value is greater than or less than the threshold value. Here, the pixel value is
denoted by C = C0C1...C7 and the threshold value by r = r0r1...r7 in binary. The quantum circuit in Fig. 4(a)
uses XOR to determine which qubits are different for each digit. If C ≥ r is set to 1 and C < r is set to 0, the
highest Ci value for which the XOR value is 1 equals the value for which the large or small judgment result.



Therefore, using the Fredkin gate, the auxiliary qubits whose initial state represents |1⟩ and the quantum state
of Ci are swapped, starting from the lower bits. The value of |d⟩, which represents the result of a large or small
judgment, is determined using the control X gate based on the value of the auxiliary qubit after the swap. Then,
based on |d⟩, the output qubit |C ′⟩ is changed to 0 or 255 using the quantum circuit shown in Fig. 4(b). This
quantum circuit requires a total of 18 auxiliary qubits: 8 qubits to realize XOR, 2 qubits for large and small
comparisons, and 8 qubits to store the pixel values resulting from the thresholding process.

4. EXPERIMENTAL RESULTS

GPU-based simulations were performed using NVIDIA GeForce RTX 3060 with cuQuantum SDK. The image
processing results for each image representation are shown.

Qubit lattice: Figure 5 shows the result of thresholding with qubit lattice. Although the application of
quantum gates increases the probability of outputting a value that corresponds to the thresholding result for the
entire image, there are cases where an incorrect value is output because the error probability is not zero. This
error has an effect, resulting in a noisy grayscale image when the number of sampling times is negligible.

FRQI: Figure 6 shows the result of performing QFT with FRQI, phase-shifting the frequency image by π
8

using the phase shift gate, and then performing invert QFT. The result is an output with reduced pixel values
and contrast.

NEQR: Figure 7 shows the result of thresholding with NEQR. When correcting the errors of the qubits
in the quantum circuit is possible, NEQR can achieve more accurate binarization than a qubit lattice. It can
perform more complex calculations since NEQR uses multiple qubits to represent pixel values. If the complexity
of the quantum circuits is not considered, it can perform image processing algorithms similar to those of classical
computers. However, depending on the quantum circuits used, the circuits may be more profound and require
many auxiliary qubits.

5. CONCLUSION

In this paper, image processing was performed on three quantum image representations: qubit lattice, FRQI,
and NEQR. Considering the characteristics of each quantum image representation, we performed thresholding
for qubit lattice and NEQR and QFT for FRQI. In addition to the quantum image representation used in this
paper, various other representation formats exist. Each has its characteristics, such as how to represent pixel
values and pixel positions and how many qubits are used in the representation. The challenge for the future is
to realize the representation with fewer quantum gates according to the characteristics of each representation.
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