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ABSTRACT

Camera calibration is a fundamental technology for image measurement. Calibration using 2D planar patterns
is the de facto standard, and is performed by displaying and detecting patterns such as a circle pattern or a
checkerboard pattern, and calibrating based on the correspondence between the coordinates of the patterns.
Recently, the patterns are often displayed on a liquid crystal display (LCD). While many previous papers have
focused on the detection method, this paper focuses on the display method. This is because LCDs have coarser
dots per inch than printing devices. In this paper, we propose a method for drawing circular patterns on LCD
that accurately and fast detects feature points based on the Gauss circle problem. Experimental results show
that the proposed method is 4 times more accurate and 2.5 times faster than previous drawing methods.

Keywords: Camera calibration, Anti-aliased circle drawing, Gauss circle problem

1. INTRODUCTION

Camera calibration plays a fundamental role in 3D computer vision. The ray geometry entering the camera is
represented by a position in 3D coordinates and a position in image projection coordinates, which are related using
the intrinsic and extrinsic parameters of the camera, respectively. The process of obtaining this is called camera
calibration. These parameter estimations were performed using a single camera,' a stereo camera,? a depth sensor
with structured light® and unstructured light,*® camera arrays.%” In addition, accurate camera parameters are
essential from the classical 2D image to 3D image generation®? to the recent Gaussian splattering.'?

3D or 2D patterns with known relative positions are often used for camera calibration. The camera parameters
are obtained by correspondence between 3D coordinate points and their 2D projected points onto the image. Since
it is easier to create 2D patterns than precise 3D patterns, calibration via 2D patterns is often used today. The
widely used Zhang’s method! is a calibration that uses 2D patterns and requires taking 2D patterns in multiple
positions and orientations. Usually, this pattern is made of printed paper attached to a flat surface. However, a
board manufactured exclusively for this purpose is preferable to ensure printing accuracy and flatness*, . On
the other hand, printing paper and sticking it to a flatboard is more convenient. However, since flatness is not
guaranteed, the calibration accuracy tends to be low.

Patterns also have two types: finding the intersection of edges or the center of gravity. The types of inter-
section of edges include checkerboard (square) ,!! triangle,'? star,'® ArUco.!* The types of the center of gravity
include circle’ and the ring.'® The checkerboard detection algorithm is one of the most widely used algorithms.
It detects corners by dividing a rectangle and finding the intersection of each edge. Wang et al.'” proposed a
method of fitting two groups of lines to find a pattern grid, De et al. and Hansard et al. proposed finding grid
lines using the Hough transform.'® ! However, such line-fitting methods are susceptible to lens distortion. For
this reason, Rufli et al. proposed a robust algorithm against strong lens distortion implemented in OCamCalib
for MATLAB.20 Highly accurate algorithms for finding the intersection of edges have also been proposed in
the triangular pattern'? and star pattern'3 detections. In general, patterns that find the center of gravity are
superior to patterns that find the intersection of edges from triangles, squares, and other shapes in terms of
detection accuracy. For circular patterns, corrected conic fitting,?! confocal conics,?? and concentric circles??
have been proposed to remove bias under the projective transformation.

Corresponding author, N. Fukushima (E-mail: fukushima@nitech.ac.jp)
*https://calib.io/
"https://www.shibuya-opt.co.jp/eng/calibration_board.html


https://calib.io/
https://www.shibuya-opt.co.jp/eng/calibration_board.html

Recently, the method of projecting a pattern on a liquid crystal display (LCD) has been introduced instead
of pattern printing due to its ease of preparation.?*:?> However, the LCD dots are large; thus, there is no escape
from the quantization error of pattern printing. In particular, since differences in luminance values are essential
for detecting the center of gravity, the shading of the circle boundary differs depending on how the circle is
drawn, and these differences affect the accuracy of pattern coordinate detection. Most papers have focused on
improving the detection accuracy of drawn patterns but have not paid much attention to how to draw them.

In this paper, we propose a fast and accurate method to draw patterns generated on the LCD. In particular,
we focus on circle patterns. The midpoint circle algorithm (i.e., a generalization of Bresenham’s algorithm?°)
is a method for drawing circles on discrete coordinates. Its anti-aliasing method has also been proposed?’ to
reduce the quantization effect. A more straightforward method that reduces the effect of aliasing is to draw a
circle on an image with a resolution higher than the display resolution and then downsample it to determine the
pixel values, but such drawing methods are cost-consuming. In this paper, we propose a method for determining
pixel values by approximating the area of each pixel of a circle using the Gauss circle problem.?®

2. METHODOLOGY

The Gauss circle problem is required to solve the number of grid points inside a circle of radius r centered at
the origin, and the circle area approximates the number of points. Therefore, measuring the number of grid
points inside the circle can determine the pixel value. In this paper, we investigate a method for drawing circular
patterns based on the Gaussian circle problem. First, we describe a method for drawing a unit circle, then extend
it to drawing an arbitrary coordinate containing a projectively transformed ellipse, and finally, we describe a
method for drawing multiple circles and ellipses.

2.1 Unit circle drawing

First, we describe how to draw a unit circle. In this paper, we assume the drawing of a unit circle with center
(1,1) and radius 1 when the circle is painted black on a white background.

Let (i,7) € N? be an integer pixel position in image v, (z,y) € R? be a floating-point coordinate, and
(m,n) € R? be a floating-point coordinate relative to the top left of the integer pixel separated by a grid point.
Considering the Gauss circle problem, the intensity value of image v can be determined by substituting the
coordinates of each grid point in all pixels into the circle equation ¢(z,y) = (x —1)? + (y — 1)? — 12 to determine
whether the grid point is inside or outside the circle. Then, we can obtain the intensity as the ratio of the number
of grid points counted inside to the number of grid points N € N in a pixel. Here, the value is a float type [0, 1].
The intensity v(i,j) € R of each pixel in the output image v — [0, 1] is determined by the following formula
using the number of all grid points N at that pixel and the number of grid points inside the circle (i, j) € N.
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The four vertices {(i,7), (i, 4+ 1), (i +1,7), (i + 1,5+ 1)} at the corners of the pixel of interest in the output
image can be checked to determine if they are completely inside or not. If all four points are inside the circle,
the pixel value is 0; if all the grid points are outside the circle, the pixel value is 1. By skipping calculations this
way, the speed can be increased without losing accuracy.



2.2 Ellipse drawing

Next, the unit circle drawing is extended to an arbitrary ellipse drawing. Given a homography matrix H that
projects an ellipse to a unit circle, the relation between the coordinates x,y on the ellipse and the coordinates
X,Y on the unit circle is as follows using the homogeneous coordinate system.
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Note that x =i+ m - h,y = j +n - h. Expanding, we obtain
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X h31x + haay + h33
Y | = haz+hoy+he |. (6)
1 hg1x + haay + hss

1

Substituting (6) into the unit circle equation X2 + Y2 = 1, we obtain
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Expanding this, the equation of the ellipse that is equal to 0 is as follows
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The left side of this equation is g(z,y), and the same process as for the unit circle drawing is used to determine
the interior and exterior of the grid points in (3).

2.3 Multiple circles and ellipses drawing

A pattern usually contains multiple circles. There are two types of patterns: symmetrical circular patterns
(regular grid) and asymmetrical circular patterns (hexagonal grid), both of which can be rendered by the proposed
algorithm. In this section, we describe the asymmetric circular pattern. If a symmetric circular pattern is drawn,
the radius must be smaller than the grid, or the circles will overlap.

First, the coordinates of multiple circles are specified by the coordinates of the four vertices of the quadrangles
that are circumscribed by those circles. For example, draw a circle inscribed in each quadrilateral shown in
Fig. 1(a). In the case of a tilted projection of the pattern, as shown in Fig. 1(b), the four vertex coordinates of
the convex quadrilateral need not be squares. Note that although the visualization is done with a checkerboard,
only the coordinate values are input in reality.

For each drawing circle, the homography H is computed from the coordinates of the four vertices of the
adjacent convex quadrilateral and the four vertices of the unit square, and the ellipse equation is derived and
then drawn using the method in Sec. 2.2. Multiple circles can be drawn in sequence for all convex quadrilaterals.
The pattern and an enlarged circle drawn by the proposed method are shown in Fig. 2.

3. EXPERIMENTAL RESULTS

We verified the accuracy of circle center of gravity detection and drawing time for a circular pattern drawing
method using the Gauss circle problems. The computer used in the experiments was Intel Core i19-11900K 3.50-
5.30 GHz (8 cores, 16 threads), and the compiler was Visual Studio 2022. A planar pattern with 7 x 6 asymmetric
circles (shown in Fig. 2) was generated in a 512 x 512 image.
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Figure 1: Drawing coordinate specification ( v1suahzat10n by a checkerboard).

a) enlarged circle ) front circle pattern c) enlarged ellipse ) tilted circle pattern
Flgure 2: Drawing circular pattern and enlarged view.
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Figure 3: (a) accuracy of circle center of gravity detection to the number of grid points, (b) pattern generation
time to the number of grid points.

3.1 Effects of the number of grid points

First, we verified the accuracy of detecting the circle center of gravity and the pattern generation time (median
time required to generate one pattern) to the number of grid points N in a pixel. The proposed method
generates circular patterns, and detection is performed on patterns rotated in the two-dimensional direction.
The root mean squared error (RMSE) between the coordinates of the center of gravity of the circle and the
ideal coordinates was used for evaluation. 100 patterns were generated at random rotation angles. The OpenCV
function cv::findCirclesGrid was used for detection.

Figure 3(a) shows the accuracy results, and Fig. 3(b) shows the speed results. RMSE decreases as the number
of grid points increases, and the slope of the graph decreases when the number of grid points exceeds 82. The
number of grid points increases proportionately to the computational time required to determine whether a grid
point is inside or outside a circle.
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Figure 4: Drawing circular patterns with changing Gaussian noise levels.
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Figure 5: (a) detection accuracy (o = 0), (b) accuracy with different noise levels, and (c) generation time. BN:
backward normal-resolution, BH: backward high-resolution, FH: forward high-resolution, GC: Gauss circle.

3.2 Comparison with competitive methods

Next, we compared the detection accuracy and drawing time between the proposed and competitive methods.
The accuracy of detecting the center of gravity of a circle was also verified by changing the Gaussian noise
level. The patterns with adding noises are shown in Fig. 4. The following four methods, including the proposed
method, are compared. Experimental conditions are the same as in the number of grid points experiment.

backward normal-resolution (BN) A regular circle is drawn with the OpenCV function cv::circle to normal
resolution image (765 x 510) and then projected in the backward direction with cv::warpPerspective.

backward high-resolution (BH) A regular circle is drawn with the function cv::circle at a resolution higher
than the display resolution (1530 x 1020), scaled down to the display resolution, and then projected
backward with the function cv::warpPerspective.

forward high-resolution (FH) A regular circle is drawn with the function cv::circle at a resolution higher
than the display resolution (1530 x 1020) and then performs a forward projection instead of a backward.
The forward projection may cause a hole in the image, but the transformation from a resolution high
enough to avoid a hole to a lower resolution. The output is the sum of pixel values spread by linear
interpolation from integer pixels to floating-point coordinates of the projection destination.

Gauss circle (GC) Proposed method with the number of grid points per pixel to N = 202.

The noise-free results for each method are shown in Fig. 5(a). The drawing method with the lowest RMSE
is the proposed GC. The proposed method is about 4 times more accurate than the baseline of BN.

Next, the accuracy for adding Gaussian noise is shown in Fig. 5(b). Note that a noise level of o greater
than 25 may cause undetectable cases. The slope of BN and BH is slightly lower than that of FH and GC, and



RMSE of BH is inverted from a certain noise level. This indicates that the noise has a less significant effect
on the shading of circles that are not accurately rendered than on the shading of circles that are accurately
rendered. However, if multiple exposures significantly suppress the noise level, a high-precision rendering such
as the proposed method will produce better results.

Finally, the generation time results are shown in Fig. 5(c). The proposed Gauss circle method had a minor
difference in detection accuracy from the forward high-resolution method, which has the next best accuracy;
however, the proposed method was about 2.5 times faster.

4. CONCLUSIONS

In this paper, we generated circular patterns based on the Gauss circle problem and compared them with other
methods. The proposed method can draw ellipses without projective transformation of the image; thus, the
circle’s boundary is not blurred. When the number of grid points per pixel reaches 82, the accuracy of circle
center of gravity detection reaches a ceiling; however, the pattern generation time increases proportionally to
the number of grid points. The proposed method is the best in accuracy and generation speed compared to
other methods. The proposed method is greatly affected by noise because the shading of the circles is rendered
relatively accurately. Therefore, it is recommended that the proposed method be used with noise reduction.
In this verification, cv::findCirclesGrid, an OpenCV function, was used as the circle detector. However, the
accuracy is expected to be improved by creating a circle detector suitable for the proposed method.
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