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Abstract—Image compression is essential in image processing,
and image quality assessment (IQA) is important in determining
the image compression level. This study aims to construct a
dataset for evaluating image quality at low compression in this
coding degradation, i.e., for high-quality images. Typical IQA
databases are selected for general-purpose image degradation,
not high-quality images. If one tries to evaluate high-quality
images, multi-level evaluations are difficult to construct suc-
cessfully. In addition, the evaluated encoder is not a de facto
standard encoding algorithm. Therefore, this study constructs
a dataset for subjective evaluation of visually near-lossless level
image compression quality based on binary level evaluation of
the just noticeable difference (JND). Experimental results showed
that the new dataset was validated for correlation by various
IQAs. It was also shown that more than the compression quality
covered by the conventional dataset is needed for the binary
evaluation of high-quality images. The dataset is available at:
https://norishigefukushima.github.io/iqanearlossless/.

Index Terms—just noticeable difference, visually near-lossless
image coding, subjective image quality assessment
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I. INTRODUCTION

Lossy image coding is essential for image delivery and
storage, and its image quality assessment (IQA) is important in
determining the compression level. Although their subjective
judgments should determine the quality perceived by people,
evaluating the quality on a case-by-case basis is costly. For
this reason, image quality is usually evaluated automatically
by creating a dataset of IQA and using objective evaluation
indices according to the dataset.

Representative IQA databases include LIVE [1], CSIQ [2],
TID2008/2013 [3], [4], and KADID-10K [5]. These datasets
evaluate universal image distortions, including coding distor-
tion as an example of distortion. They are not intended to
evaluate high-quality coded images, as the primary purpose of
the datasets is to create an IQA index for universal distortion.
Distortions are evaluated as a mean opinion score (MOS) of
5, 10, or 100 levels, and the encoding distortions include
JPEG [6] and JPEG2000 [7]. However, the visual differences
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due to encoding distortion must be clear to evaluate at multiple
levels; thus, the compression levels will be high, and their val-
ues will be beyond the practical range. In addition, JPEG2000
is not a de facto standard encoding.

When the visual difference of degradation is small and
difficult to judge, a subjective evaluation of the just noticeable
difference (JND) is selected, a binary evaluation method of
similarity or dissimilarity. Typical JND evaluations of coding
degradation use an adjustment or bi-selection method [12]
to evaluate similarity or dissimilarity by changing quality
parameters. KonJND-1k [10] uses the adjustment method. The
method requires a skilled subject to make a proper evaluation.
Otherwise, subjects tend to select a point where degradation is
more clearly visible to quickly determine the quality parameter
of the JND point, resulting in the selection of a low-quality
parameter. MCL-JCI [8] and Shen et al. [9] use the bi-selection
method, which is more stable. These datasets use 64/55-inch
TV with long distances; thus, the characteristics differ from the
other dataset. Moreover, what is being measured is a relative
quality parameter (QP) of the JND point when looking at
continuously changing quality parameters, and no experiment
has been constructed for making IQA metrics.

Unlike typical JND-based coding degradation evaluation,
learned perceptual image patch similarity (LPIPS) [11] uses
JND for building IQA metrics. LPIPS uses JNDs to evaluate
image quality, which is difficult to determine whether the
quality degradation is close to the original image. While this
data is created for deep learning and serves the purpose of the
LPIPS paper well, the data is insufficient to create a classical
IQA metric. First, 64 × 64 patches are used to collect much
subjective data, so the evaluation is not made on an image-
by-image basis. Therefore, the influence of the surroundings
should be addressed. In addition, to ensure patch diversity,
there is only one evaluator for each patch. When a single
patch is extracted, it cannot be used to statistically determine
whether the patches are identical, i.e., a binary decision.
Furthermore, the data is collected through crowdsourcing to
ensure diversity. Since the data is not under a controlled
laboratory environment, it is difficult to judge based on a single
image alone with a few data since it is greatly affected by the979-8-3503-1173-0/23/$31.00 ©2023 IEEE



TABLE I: Charactoristics of Datasets. ∗The Internet-based IQA. †big-screen TV-based IQA. ‡Patch-based IQA.
Dataset Quality parameters Score Content Resolution of references Test environment

LIVE [1] {82, 35, 23, 14, 3, 1} MOS 29 768× 512 lab
IQA ∗TID2013 [4] {80, 60, 23, 8, 4} MOS 25 512× 384 lab or crowdsourcing

(JPEG) ∗KADID [5] {43, 36, 24, 7, 4} MOS 81 512× 384 crowdsourcing
†MCL-JCI [8] continuity QP 50 1920× 1080 lab

JND †Shen et al. [9] continuity QP 39 1920× 1080 lab
∗KonJND-1k [10] continuity QP 1008 640× 480 crowdsourcing

∗‡LPIPS [11] random 0 or 1 9.6k 64× 64 crowdsourcing
JPEG {90, 80, 70, 60, 50, 35, 20} Ratio 10 512× 512 and 1024× 1024 lab

Proposed WebP {90, 80, 70, 60, 50, 35, 20} Ratio 10 512× 512 and 1024× 1024 lab
HEIF {55, 50, 45, 40, 35, 30, 25} Ratio 10 512× 512 and 1024× 1024 lab

(a) 604.14 (b) 488.26 (c) 445.84 (d) 327.09 (e) 207.09

(f) 97.46 (g) 93.16 (h) 84.51 (i) 70.06 (j) 67.78

Fig. 1: Test images; (a)∼(e) high-frequency images, (f)∼(j)
high-frequency images. Noted values are the average of 3× 3
patch’s variances for each image.

display and the surrounding environment.
Therefore, we construct a new dataset for visually near-

lossless compression with standard encoders based on JND in
this study, named Meikoudai image distortion dataset (MIDD).
A distorted image is evaluated by 30 subjects under labora-
tory control. Also, the data is evaluated by the typical IQA
metrics: peak signal-noise-ratio (PSNR), structural similarity
(SSIM) [13], and gradient magnitude similarity deviation
(GMSD) [14]. The contributions of our dataset are as follows.

• identification ratios based on JND instead of MOS.
• de facto encoders: JPEG, WebP with/without deblocking

filter, and HEIF.
• different resolutions (512× 512, 1024× 1024) par image

to represent dpi difference.
Table I summarizes the characteristics of the datasets.

II. MIDD DATASET CONSTRUCTION

The JND-based subjective evaluation was conducted to mea-
sure the degree of various coding deterioration. Participants
were asked to identify the differences between the original
and compressed images. Ten grayscale images are used as test
images selected from the Kodak images. The original images
are 768 × 512 or 512 × 768, but were cropped to 512 × 512
(See Fig. 1). The images can be divided into two categories:
high-frequency (a,b,c,d,e) and low-frequency (f,g,h,i,j).

These images were degraded by four types of compression:
JPEG [6], WebP [15] with and without deblocking filtering,
and HEIF [16]. For each degradation, we have 50 images.
Also, we upscale these images by the nearest neighbor method

(a) 512× 512 (b) 1024× 1024

Fig. 2: Screenshot during the experiment of two size cases.
from 512 × 512 to 1024 × 1024 to simulate a halved dpi
resolution. Note that the image is upscaled after compression.
In total, we have 4 × 50 × 2 = 400 degraded images. Each
compression’s quality parameters differ for 512 × 512 and
1024× 1024. Each image was judged by 30 participants who
were not image-processing researchers in their 10s and 20s.
Participants were recruited primarily through bulletin boards
at Nagoya Institute of Technology and did not include students
within the laboratory conducting the study. Totally, we have
400× 30 = 12, 000 judgments.

Next, we show the experimental protocol. After simulta-
neously showing the original and degraded images side-by-
side, participants were asked to compare the uncompressed
images to the compressed ones. The experimental interface is
shown in Fig. 2. If participants judged two images to be the
same, they were instructed to input “1”; if they judged them
to be different, they were instructed to input “0”. The time for
making each judgment is up to 12 seconds. If the participants
felt that the images were the same, they were required to spend
at least 6 seconds making the judgment before moving on to
the following image. If 12 seconds had elapsed, the participant
judged that the images were identical. This procedure was
repeated for 200 images of 1024× 1024 and then for the last
200 images of 512 × 512. The display was EIZO CS 270
(27inch 2560 × 1440 / IPS), and the viewing distance was
0.5 m.

Furthermore, we took care to minimize any potential impact
of the experimental environment on the results. To reduce the
effect of afterimages from the previous image display, we set
the interval between showing image pairs to 500 ms. To reduce
the effect of habituation during the experiment, we informed
the participants of the points in the images where block noise
and blurring might occur due to the encoding.

III. EXPERIMENTAL RESULTS

Figures 3 to 6 show assessment results for three IQA meth-
ods: PSNR, SSIM, and GMSD. The y-axis is the identification
rate, and the x-axis is the objective IQA value. A scatter



 0

 20

 40

 60

 80

 100

 25  30  35  40  45
R

at
e 

[%
]

PSNR [DB]
high low

(a) JPEG

 0

 20

 40

 60

 80

 100

 25  30  35  40  45

R
at

e 
[%

]

PSNR [DB]
high low

(b) WebP (off)

 0

 20

 40

 60

 80

 100

 25  30  35  40  45

R
at

e 
[%

]

PSNR [DB]
high low

(c) WebP (on)

 0

 20

 40

 60

 80

 100

 25  30  35  40  45

R
at

e 
[%

]

PSNR [DB]
high low

(d) HEIF

Fig. 3: PSNR (512× 512)
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(b) WebP (off)
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(c) WebP (on)
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(d) HEIF

Fig. 4: SSIM (512× 512)
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(d) HEIF

Fig. 5: GMSD (512× 512)
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(d) HEIF

Fig. 6: GMSD (1024× 1024)

plot indicates a degraded image’s identification rate and IQA
index. The identification rate is the average of the binary JND
decisions from 30 subjects. Also, the high label shows the
high-frequency image; the other is the low-frequency image.
Only in Fig. 5, the scatter plots are colored by quality factors.
Note that high-resolution cases for PSNR and SSIM are
omitted due to the page limits.

In PSNR (Fig. 3), they are divided into high/low-frequency
groups. It is difficult to evaluate visually near-lossless images
with PSNR because it is affected by the frequency of the input
image. In SSIM (Fig. 4), the group difference is smaller than
PSNR but remains. GMSD (Fig. 5) has a higher correlation
than PSNR and SSIM. The difference between groups has
decreased in the GMSD’s ×2 resolution case.

In Fig. 5, quality factors of conventional IQA dataset [1],
[4], [5] cannot cover the range of the plots due to the limited
QP ranges (See Tab. I). Points of QP=20 or QP=70 are edge
clusters; thus, middle QP points are missing.

Next, we compute Spearman’s rank correlation coefficient
(Tab. II). The PSNR correlations are very weak; JPEG and
WebP have almost no correlation, and HEIF correlations are
also weak. The correlation improves slightly for SSIM and is
highest for GMSD. Note that WebP with deblocking filtering
has an effect when the display size is large and the opposite

TABLE II: Spearman’s rank correlation coefficient.
512× 512

JPEG WebP (off) WebP (on) HEIF
PSNR -0.1839 -0.0454 0.0565 -0.4583
SSIM -0.5716 -0.6677 -0.6271 -0.7825

GMSD 0.8084 0.7815 0.7683 0.8072

1024× 1024
JPEG WebP (off) WebP (on) HEIF

PSNR -0.4090 -0.3483 -0.3238 -0.6167
SSIM -0.6855 -0.7322 -0.7534 -0.8403

GMSD 0.8107 0.7935 0.8378 0.8307

effect when the display size is small. Deblocking filter is de-
signed to smooth out blocky artifacts caused by compression,
which improves visual quality; however, smoothing the image
can also remove textures. The presence or absence of textures
is a crucial factor for the judgment of this experiment.

IV. CONCLUSION

This paper provided a JND-based subjective evaluation
dataset for high-quality compression, named MIDD. JPEG,
WebP (with and without deblocking filter), and HEIF were
evaluated as coding degradation, and two types of dpi were
evaluated. The dataset is evaluated by using PSNR, SSIM, and
GMSD. The current limitation of this dataset is only grayscale
image dataset.
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