
Performance Evaluation of Image Convolution with
WebAssembly

Sou Oishi, Kazuya Ishikawa, Haruki Nogami, and Norishige Fukushima

Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466–8555, Japan.

ABSTRACT

Writing image processing in WebAssembly enables the development of highly portable libraries. However, since
WebAssembly is a new technology, there are not enough libraries available, and it is only supported by OpenCV.
However, OpenCV has not been optimized specifically for WebAssembly. Therefore, in this paper, we develop
native code using WebAssembly and compare it with OpenCV’s Gaussian filter using the separable Gaussian
filter, a classical acceleration method for Gaussian filters. Experimental results showed that the Separable
Gaussian filter was faster than OpenCV by performing vector operations in WebAssembly.

Keywords: WebAssembly, image convolution, acceleration

1. INTRODUCTION

Image convolutions, such as Gaussian filtering, are essential in various image processing applications. Image
processing is computationally expensive; thus, the filters have been accelerated by native language, i.e., C/C++,
and vectorized and parallelized to extract the performance of the native computers. For example, wavelet,1

finite impulse response filtering,2–4 infinite impulse response filtering,5 recursive filtering,6,7 local Laplacian
filtering,8 bilateral filtering,9–11 frequency filtering,12,13 guided image filtering,14 and K-means clustering.15

Each implementation is optimized on CPU characteristics and vector units.

In the past, it was difficult to perform such optimizations on the web platform. First of all, drawing graphics
on a web page was generally done by replacing them with native JavaScript with image files such as PNG, JPEG,
and GIF, or by embedding plug-in data. However, with the development of HTML5 (W3C’s HTML5 is now
obsolete, and WHATWG’s HTML Living Standard is commonly used, but HTML5 is used here to refer to the
period after HTML5 was born) and related technologies, the Web has matured as an application platform. One
of the drawing elements added in HTML5 is the canvas tag. The canvas tag enables the quick display of graphics
such as graphs and image processing results using only standard HTML and JavaScript.

The next point is the lack of performance that differs from native applications using C/C++. This is why
asm.js was created as a subset of JavaScript designed for fast execution. The goal of asm.js was to achieve
at least half the performance of native JavaScript, and it was supported by browsers such as Google Chrome
and Firefox. The asm.js can convert code written in C or C++ into JavaScript with safety and optimization
considerations through the Emscripten compiler, and run it in a browser. While asm.js has enabled improved
performance, asm.js has the problem of long loading times. The asm.js takes a long time for parsing (the process
by which the browser parses the syntax and changes it into an executable form) before executing JavaScript.
Especially on mobile devices, loading 40MB of JavaScript code took from 20 to 30 seconds to execute. Therefore,
WebAssembly16,17 was developed to solve this problem. WebAssembly has improved loading times, is a suitable
language for HTML5, and is expected to accelerate image processing on the web, also supports vectorized
computing, such as single instruction multiple data (SIMD). Note that it is a new technology; thus there are
a few implementations: OpenCV (a well-known image processing library), Photon (https://silvia-odwyer.
github.io/photon/), and libvips (https://www.libvips.org/). Therefore, there are few evaluations for image
processing in WebAssembly, newly evaluated by numerical linear algebra papers.18

OpenCV has published OpenCV.js compliant with WebAssembly, but no comparison has been performed
to compare whether their implementations are fast enough. Therefore, in this paper, we accelerate Gaussian
filtering as a classical method and compare them with OpenCV.js.19

Further author information: (Send correspondence to Norishige Fukushima)
Norishige Fukushima: E-mail: fukushima@nitech.ac.jp. This work was supported by JSPS KAKENHI (21H03465).

https://silvia-odwyer.github.io/photon/
https://silvia-odwyer.github.io/photon/
https://www.libvips.org/

C lang. WebAssembly
Module
(.wasm, .js)

HTML
File

Browser
Emscripten
compiler

JavaScript
glue code

Figure 1. Experimental Flow

2. WEBASSEMBLY

Portability is essential for web applications; thus, it is challenging to use native-tuned code. WebAssembly allows
native-tuned code, such as C/C++, to be compiled through Emscripten compiler (https://emscripten.org/),
which is a compiler from C/C++ to WebAssembly. for various web applications. In addition, JavaScript’s V8
engine supports SIMD, which allows vectorization of processing with CPU power. WebAssembly also supports
128-bit SSE which is one of the vectorizations. However, WebAssembly is not fully executable in the same way as
native environments because SIMD instructions are different for each CPU micro-architecture, such as x86 and
ARM. For example, some SIMD instructions are not supported, and in some cases, writing in SIMD is slower due
to emulation. Another project is currently underway to support SIMD instructions, such as fused multiply-add
(FMA), but it is still in the implementation stage. Furthermore, multi-threading, which is indispensable for
accelerating performance, is still in the implementation stage, as is SIMD. The enabled SIMD in WebAssembly
is implemented as standard in browsers such as Google Chrome and Firefox.

In addition, loading time is an important aspect of WebAssembly development, and another important aspect
is that it enables functionality that is not possible with JavaScript processing systems such as a dynamic link.
Also, the heap size limit can be relaxed. With JavaScript, each tab of the browser can hold only 4 GB, which
is small, so it is possible to use it more widely. The memory management of JavaScript and WebAssembly is
completely separate, just as JavaScript manages memory separately for each tab in a browser. Sharing memory
between the two, JavaScript and WebAssembly, requires optional settings, and by default, a dedicated area is
created in favor of performance and safety. Furthermore, for example, when there is a long array of data if
the accessed index is not inside the overall array size, it will cause a security problem. With 64-bit arrays, the
hardware points out whether the index is inside the array or not, but with 32-bit arrays, it must be checked.
WebAssembly converts the code to one that is easy to check.

Finally, WebAssembly has the following features.

• WebAssembly code can run at native speeds across different platforms, making it fast and efficient.

• WebAssembly is a low-level assembly language, but it has a human-readable text format and is debuggable.

• As with other web technologies, it is secure because it forces the browser to confirm the same-origin and
authorization policy.

• It is designed to work with other web technologies and maintain backward compatibility, so it does not
break the web.

The processing flow of this paper for image processing on the web is shown in Fig. 1. The code written in
C-language is compiled with the Emscripten compiler and converted into WebAssembly code. The code is loaded
into HTML as a JavaScript glue and displayed in the browser.

3. IMPLEMENTATION

3.1 Data Sharing

First, the implementation method is described. In JavaScript, the image is retrieved from the HTML canvas
tag. The data in the canvas tag is a 4-channel image including RGB and alpha channels, and the data type is

https://emscripten.org/

Get image data
from HTML canvas tag Convert

on JavaScript
Gaussian filtering

1. Convert all pixels to
single-precision floating point number

2. Filtering

WebAssembly function

JS-32

WebAssembly function

1. Just convert the data needed to filter
and apply vertical filtering

2. Horizontal filtering

WebAssembly function

All-8

Redundant-8

Figure 2. Processing flow of data sharing.

8-bit unsigned integer, which is Uint8ClampedArray.∗. In the process of calculation, 8-bit unsigned integers are
cast to single-precision floating-point numbers for vector computing.

There are two candidates in terms of implementation of the data sharing part (Fig. 2): 8-bit or 32-bit sharing.
This part copies or converts image data from a canvas to a shared memory by JavaScript operation, which can
be a native operation supported by each browser. When 8-bit data is passed, it can be divided into two types
depending on when it is cast to 32-bits float data. Therefore, we consider the following three types:

• Redundant-8 : After passing 8-bit data to the WebAssembly function, we only convert the necessary data
for convolution to single-precision floating-point data, redundantly.

• All-8 : After passing 8-bit data to the WebAssembly function, we first convert all image data to a single-
precision floating-point number image.

• JS-32 : Before passing data, we convert input 8-bit data to 32-bit float before calling the WebAssembly
function on the JavaScript side, and then pass the 32-bit data.

WebAssembly supports 128-bit vector operations, such as SSE; thus, single-precision floating-point numbers
can be vectorized in four-pixel unit operations. It is suitable for 32-bit RGBA format since one SIMD operation
can handle a pixel operation for each color. For comparison, we also performed an implementation without
SIMD. Note that we pass the 4 channels of data from the JavaScript side, but the computation was performed
excluding the alpha channel. The cast performed on a 128-bit SSE is shown in Fig. 3. First, eight 8-bit signals
are converted to eight 16-bit signals and loaded. Next, the upper and lower 4 units of 16-bit data are each
converted to 32-bit integers, and finally, the integers are cast to single-precision floating- point numbers.

3.2 Separable Convolution

Let’s introduce image convolution, which is optimized in this paper. We use separable convolution, which is one
of the typically accelerated convolutions. The method divides a 2-dimensional convolution into two 1-dimensional
kernels. As a result, the computational cost is reduced from O(M ×N ×m× n) to O(M ×N × (m+ n)) in the
case of an M ×N image. Let Gaussian filtering (GF) be an example. GF is defined as follows:

gp =

∑
q∈Np

exp(
−∥p−q∥2

2)
2σ2)fq∑

q∈Np
exp(

−∥p−q∥2
2)

2σ2)
, (1)

∗There are two mode: alphamultiply and premultiplied. The former’s RGB values are the as-is value, and the latter’s
RGB values are pre-normalized by alpha value for fast rendering.

16bit

32bit (int)

32bit (float)

・・・

・・・

・・・

・・・

wasm_u16x8_load8x8

wasm_i32x4_extend_low_i16x8

wasm_f32x4_convert_i32x4

wasm_f32x4_convert_i32x4

wasm_i32x4_extend_high_i16x8

32bit (int)

32bit (float)

8bit (integer) input image

Figure 3. SIMD type conversion from 8-bit integer to 32-bit float.

where f is an input image, g is an output image of GF, p is a pixel position, and Np is the set of the neighboring
pixels of p. This can be divided as follows:

gV
p =

∑
q∈NV

p
exp(

−∥p−q∥2
2)

2σ2)fq∑
q∈NV

p
exp(

−∥p−q∥2
2)

2σ2)
(2)

gp =

∑
q∈NH

p
exp(

−∥p−q∥2
2)

2σ2)gV
q∑

q∈NH
p
exp(

−∥p−q∥2
2)

2σ2)
(3)

where NV
p (NH

p) is the set of only vertical (horizontal) components containing p (respectively). Of course, there
is no difference in output whether this implementation is done vertically or horizontally. In this implementation,
the order of the expressions was used.

In this paper’s implementation, a vertical filter is applied followed by a horizontal filter. In addition, for
efficient data access, we use an interleaved implementation, i.e., tiling by each scanline. The vertical filtering
result is stored in one line buffer and the horizontal filtering is performed for the line buffer. This implementation
has enough cache efficiency with full tiling implementation, which requires complex implementation.20 In the
following, the filtering method is shown in Fig. 4. Note that the border area is replicated to the border with the
row or column at the edge of the original image.

．．．

Figure 4. Filtering pass.

4. EXPERIMENTAL RESULTS

We compared the processing time of our WebAssembly implementation of some separable filterings with pre-built
OpenCV.js (version: 4.6.0). In addition, since image processing in WebAssembly requires that data be allocated
in shared memory between JavaScript and WebAssembly for processing, this paper experimented with three
different ways of sharing data.

Our implementation was vectorized by 128-bit SIMD supported by WebAssembly. Note that WebAssembly
does not support 256-bit/512-bit SIMD, such as AVX/AVX2/AVX-512. All implementations are not parallelized

(a) Test image (b) Gaussian filtering result

Figure 5. Test image and the result of Gaussian filtering (smoothing parameters: σ = 4, kernel size is 25× 25).

Table 1. The processing time for different implementations of GF [ms]

OpenCV.js
OpenCV.js
built with SIMD

Redundant-8
with SIMD

All-8
with SIMD

JS-32
with SIMD

JS-32
w/o SIMD

Time [ms] 57.36 9.21 27.179 8.524 8.034 15.49

because WebAssembly does not support multi-threading, officially. The test CPU was Intel Core i9-9900K CPU
@ 3.60GHz. The test image size was 512 × 512 (Fig. 5(a)). The experimental environment is Windows 10 and
Google Chrome (version: 107.0.5304.107, 64-bit). Implementation was done using C-language and compiled into
WebAssembly using Emscripten compiler. The image processing parameters were set to σ = 4, the radius to
r = 3σ, and the kernel size was set to 25× 25. The result of Gaussian filtering on Fig. 5(a) is shown in Fig. 5(b).

Table 1 shows the processing time for each type of implementation. The processing time is the average of
the results of 1000 trials. First, the implementation of the official OpenCV build was the slowest compared
to the others. The official OpenCV version took more than twice as long to compute as that A non-SIMD
implementation of the JS-32 method. Next, OpenCV.js built with the SIMD option is compared with the
implementation. The implementation method resulted in faster results than Redundant-8 and slower results
than the other implementations.

Finally, we compare the three shared memory and casting methods. First, the fastest method was to copy
to single-precision floating-point data on the JavaScript side (JS-32). This is considered the fastest method
because its conversion is optimized on the browser even if the function is called in the JavaScript side. Usually,
operations written in JavaScript tend to be slow; however, library functions have optimized binary for each naive
environment, which binary is contained for each browser.

The slowest was the method that converts each time before interleaving (Redundant-8). This approach has
redundant casting processes because each convolution requires overlapped regions. In the naive environment,
usually, this approach is the fastest, because the process is the most cache-efficient implementation. Cache access
efficiency gain is greater than the overhead of redundant casts. However, WebAssembly has a large overhead due
to insufficient SIMD implementation of casts.

All-8 is the second first method, which is very similar to JS-32. The main difference is conversion operation
is supported by WebAssembly or JavaScript. The simple operation of casting all data is supported by native
operations which can use 256/512-bit SIMD operations; thus, JS-32 is faster.

5. CONCLUSION

This paper compared OpenCV.js with the implementation in WebAssembly converted from C language by
evaluating separable Gaussian filtering. Experimental results showed that even the separable filter, a classical
speed-up method for Gaussian filters, was faster than OpenCV.js by using WebAssembly and SIMD. Furthermore,

WebAssembly’s SIMD did not support all instructions, and some instructions were emulated, which sometimes
resulted in slower performance. Since the convert instruction was not fast in this experiment, it was found that
the same idea as in native environments such as C language could not be used to accelerate the performance.

REFERENCES

[1] Sumiya, Y., Kamei, H., Ishikawa, K., Sumiya, Y., and Fukushima, N., “Vectorized computing for edge-
avoiding wavelet,” in [International Workshop on Advanced Image Technology (IWAIT),], 12177, 23 – 28,
International Society for Optics and Photonics, SPIE (2022).

[2] Maeda, Y., Fukushima, N., and Matsuo, H., “Taxonomy of vectorization patterns of programming for fir
image filters using kernel subsampling and new one,” Applied Sciences 8(8) (2018).

[3] Maeda, Y., Fukushima, N., and Matsuo, H., “Effective implementation of edge-preserving filtering on cpu
microarchitectures,” Applied Sciences 8(10) (2018).

[4] Fukushima, N., Tsubokawa, T., and Maeda, Y., “Vector addressing for non-sequential sampling in fir image
filtering,” in [IEEE International Conference on Image Processing (ICIP)], (2019).

[5] Fukushima, N., Sugimoto, K., and Kamata, S., “Complex coefficient representation for iir bilateral filter,”
in [in Proc. International Conference on Image Processing (ICIP)], (2017).

[6] Fukushima, N., Maeda, Y., Kawasaki, Y., Nakamura, M., Tsumura, T., Sugimoto, K., and Kamata, S.,
“Efficient computational scheduling of box and gaussian fir filtering for cpu microarchitecture,” in [Proc.
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA),
2018.], (2018).

[7] Otsuka, T., Fukushima, N., Maeda, Y., Sugimoto, K., , and Kamata, S., “Optimization of sliding-dct based
gaussian filtering for hardware accelerator,” in [Proc. International Conference on Visual Communications
and Image Processing (VCIP)], (2020).

[8] Sumiya, Y., Otsuka, T., Maeda, Y., and Fukushima, N., “Gaussian fourier pyramid for local laplacian filter,”
IEEE Signal Processing Letters 29, 11–15 (2022).

[9] Sugimoto, K., Fukushima, N., and Kamata, S., “200 fps constant-time bilateral filter using svd and tiling
strategy,” in [IEEE International Conference on Image Processing (ICIP)], (2019).

[10] Sumiya, Y., Fukushima, N., Sugimoto, K., and Kamata, S., “Extending compressive bilateral filtering for
arbitrary range kernel,” in [Proc. International Conference on Image Processing (ICIP)], (2020).

[11] Miyamura, T., Fukushima, N., Waqas, M., Sugimoto, K., and Kamata, S., “Image tiling for clustering to
improve stability of constant-time color bilateral filtering,” in [Proc. International Conference on Image
Processing (ICIP)], (2020).

[12] Fujita, S., Fukushima, N., Kimura, M., and Ishibashi, Y., “Randomized redundant dct: Efficient denoising
by using random subsampling of dct patches,” in [SIGGRAPH Asia 2015 Technical Briefs], ACM (2015).

[13] Fukushima, N., Kawasaki, Y., and Maeda, Y., “Accelerating redundant dct filtering for deblurring and
denoising,” in [IEEE International Conference on Image Processing (ICIP)], (2019).

[14] Fukushima, N., Sugimoto, K., and Kamata, S., “Guided image filtering with arbitrary window function,”
in [IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)], (2018).

[15] Otsuka, T. and Fukushima, N., “Vectorized implementation of k-means,” in [Proc. International Workshop
on Advanced Image Technology (IWAIT)], (2021).

[16] Rossberg, A., “Webassembly core specification,” tech. rep., W3C (2019). https://www.w3.org/TR/

wasm-core-1/, https://webassembly.github.io/spec/core/_download/WebAssembly.pdf.

[17] Rossberg, A., “WebAssembly Core Specification,” tech. rep., W3C (2022). https://www.w3.org/TR/

wasm-core-2/, https://webassembly.github.io/spec/core/_download/WebAssembly.pdf.

[18] Bhonsle, A., Patil, V., Valkunde, T., and Lotlikar, T., “Linear algebra in the browser powered by webassem-
bly,” in [International Conference for Advancement in Technology (ICONAT)], 1–7 (2022).

[19] “opencv.js.” https://docs.opencv.org/4.6.0/opencv.js.

[20] Fukushima, N., Fujita, S., and Ishibashi, Y., “Switching dual kernels for separable edge-preserving filtering,”
in [Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)], (2015).

https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://www.w3.org/TR/wasm-core-2/
https://www.w3.org/TR/wasm-core-2/
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://docs.opencv.org/4.6.0/opencv.js

	Introduction
	WebAssembly
	Implementation
	Data Sharing
	Separable Convolution

	Experimental Results
	Conclusion

