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ABSTRACT

In this paper, we propose to speed up bilateral filtering by principal component analysis (PCA)-based dimension-
ality compression method with constant-time bilateral filtering. Constant-time bilateral filtering speeds up the
filtering by representing it as a summation of the multiple Gaussian filters. However, a simple implementation is
of the order of O(K3) for color and suffers from the curse of dimensionality. A clustering-based approximation
speedup solves this problem with an order of O(K) or O(K2). PCA can provide a more informative signal rel-
ative to the transformation matrix. We have accelerated the process by converting the color information of the
input image from 3-channel to 1-channel by PCA, considering the constant-time bilateral filter as joint bilateral
filtering, and using the transformed image as a guide image. This dimensional reduction allowed us to filter
images with sufficient accuracy at a higher speed.
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1. INTRODUCTION

Bilateral filtering (BF)1 is an edge-preserving smoothing filter used in various situations. Deblurring,2,3 detail
emphasis,4 high- dynamic range imaging (HDR),5 Dehaze,6,7 Depth map correction,8 Stereo-matching9 are
examples.

BF uses a composite kernel generated according to the distance between pixels (spatial kernel) and the
difference in luminance values (range kernel). Since the shape of the composite kernel is different for each
pixel of interest, the computational complexity is more significant than that of a linear filter such as Gaussian
filtering (GF). In this case, the computational complexity depends on the kernel radius of the filter, resulting in
a significant processing time.

To solve this problem, a constant-time BF (O(1)BF)10 has been proposed, which speeds up BF by decompos-
ing it into multiple spatially invariant filters, and its speed does not depend on its kernel radius. However, while
a grayscale convolution works as fast as O(K), the color implementation suffers from the curse of dimensionality,
as in O(K3), where K is the approximate order and K << r. Clustering-based approaches11,12 solve this curse,
and the order is O(K) or O(K2). However, the accuracy of the filter approximation depends on the clustering
results, and the randomness of the clustering makes the filter results unstable. In addition, the clustering process
itself is an overhead. The color information for the weight calculation is the curse of the color BF dimension.

Suppose the number of guide images can be reduced from 3 channels to 1 channel. In that case, the con-
ventional color BF can be significantly accelerated because we can use the acceleration approaches for grayscale
images. In this paper, we show that, in many cases, sufficient accuracy can be achieved by converting the guide
image to a lower dimension using principal component analysis (PCA).
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2. RELATED WORKS

2.1 Constant-time Bilateral Filter

First, the formulation of BF is shown below.

f̂p =

∑
q∈S ws(p, q)wr(fp, fq)fq∑
q∈S ws(p, q)wr(fp, fq)

, (1)

where fp is the image luminance value, S is neighbor pixels. ws = e
− ∥q−p∥22

2σ2
s , wr = e

− ∥b−a∥22
2σ2

r are weight functions
called spatial and range kernel functions, respectively, and are defined by Gaussian functions. Note that σs and
σr are smoothing parameters for each kernel.

Constant-time BF achieves speedup by decomposing BF into multiple Gaussian filters, shown below.

wr(fp, fq) =

K−1∑
k=0

ϕk(fp)ψk(fq) (2)

f̂p≈
∑K−1

k=0 ϕk(fp)
∑

q∈S ws(p, q){ψk(fq)fq}∑K−1
k=0 ϕk(fp)

∑
q∈S ws(p, q){ψk(fq)}

. (3)

K is the order of approximation. Since {·} in this expression can be regarded as an intermediate image, and in
addition, the

∑
q∈S part is a convolution operation of it, we can decompose BF into a combination of convolution

operations for a fixed spatial kernel for a total of 2K times. However, in the case of color processing, the number
of GFs to be decomposed increases with the number of channels, resulting in the curse of dimensionality: 8 GFs
are required for gray, while 256 are required for color.

The weights in the form have various forms such as interpolation,13 compressive,14,15 and SVD.16

2.2 Compressive Bilateral Filter

Compressive bilateral filtering14,15 uses Fourier series expansion to separate the range kernel from the variables.
Since the range kernel is a Gaussian function and an even function, it can be approximated as follows:

wr(x) ≈ ŵr(x,K, T ) = α0 + 2

K∑
k=1

αk cos

(
2π

T
kx

)
, (4)

where αk, the Fourier coefficients, can be expressed as:

αk =
1

T

∫ T/2

−T/2

wr(x) cos(
2π

T
kx)dx (5)

Here, since a Gaussian function is used as the range kernel, the Fourier coefficients can be approximated as
αk ≈ 2

T exp−
1
2 (

2π
T kσ)2 . Substituting the range kernel approximated by the Fourier series expansion into the

expression(3) and using the additive theorem of trigonometric functions, the output of the bilateral filter, f̂p,
can be expressed as follows.

f̂p ≈
α0f̃p + 2

∑K
k=1 αk(cos(ωkfp)C̃ ′

p + sin(ωkfp)S̃′
p)

α0 + 2
∑K

k=1 αk(cos(ωkfp)C̃p + sin(ωkfp)S̃p)
(6)

where C̃p, S̃p, C̃ ′
p, S̃

′
p represent the convolution for the intermediate image and f̃p is the output of convolution

in the DC component.

C̃p =
∑
q∈S

ws(p, q) cos(wkfq), S̃p =
∑
q∈S

ws(p, q) sin(wkfq)



C̃ ′
p =

∑
q∈S

ws(p, q) cos(wkfq)fq, S̃′
p =

∑
q∈S

ws(p, q) sin(wkfq)fq

Also, wk = 2π
T k, and the period T is determined to minimize the following analytically determined error.

E(K,T ) = erfc
(πσ
T

(2K + 1)
)
+ erfc

(
T−R
σ

)
. (7)

In this method, convolution is performed for four intermediate images and one DC component per order, so a
total of 4K+1 convolutions are required for the approximate order K. Note that the implementation reduces the
multiplication by dividing each coefficient in the denominator numerator by α0 and doubling it to α′

k = 2αk/α0.

f̂p≈
f̃p+

∑K−1
k=1 α

′
k(cos(ωkfp)C̃ ′

p+sin(ωkfp)S̃′
p)

1 +
∑K−1

k=1 α′
k(cos(ωkfp)C̃ ′

p + sin(ωkfp)S̃′
p)

(8)

2.3 Clustering-based Constant-time Bilateral Filter

Clustering-based constant-time bilateral filtering (CCBF)17 used in this paper adopts Nyström approximated
acceleration of eigenvalue decomposition (EVD).

First, we explain EVD for CCBF. Let T = {fp : p ∈ S} be a list of color vector values in a signal
f : S 7→ [0, R]3. Let T = {t1, t2, . . . , tm} be a ordering of the elements in T , where m is the number of elements.
Given an index l ∈ [1,m], tl = fp for some p ∈ S. An index map τ : S 7→ [1,m] can track the correspondence,
where

τp = l if tl = fp. (9)

Next, the kernel matrix W ∈ Rm×m is defined. The elements of W is given by

W (i, j) = wr(ti, tj) = exp

(
−∥ti − tj∥22

2σ2
r

)
, (10)

where i, j ∈ [1,m]. Substituting (10) for (25) gives

f̄p =

∑
q∈Np

ws(p, q)W (τp, τq)fq∑
q∈Np

ws(p, q)W (τp, τq)
, (11)

W is a symmetric matrix; thus, EVD of W is as follows;

W =

m∑
k=1

λkuku
T
k , (12)

where λk(λ1 ≥ λ2 ≥, ...,≥ λm ∈ R) are the eigenvalues, and uk is the corresponding eigenvectors. Substituting
(12) to (11) gives

f̄p=

∑
q∈Np

ws(p, q)
∑m

k=1 λkuk(τp)uk(τq)fq∑
q∈Np

ws(p, q)
∑m

k=1 λkuk(τp)uk(τq)
, (13)

On switching the sums, this becomes

f̄p=

∑m
k=1 λkuk(τp)

∑
q∈Np

ws(p, q){uk(τq)fq}∑m
k=1 λkuk(τp)

∑
q∈Np

ws(p, q){uk(τq)}
. (14)

Next, we approximate the filter. Let Ŵ ∈ RK×K be the matrix of a low-rank approximation of W using the
top K(K ≪ m) eigenvalues and eigenvectors. Using Ŵ instead of W in (14), BF can be approximated as

f̄p≈
∑K

k=1 λkuk(τp)
∑

q∈Np
ws(p, q){uk(τq)fq}∑K

k=1 λkuk(τp)
∑

q∈Np
ws(p, q){uk(τq)}

. (15)
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Figure 1. Image dimensional compression by PCA

For the Nystöm approximation of EVD of W , we first construct a small kernel A ∈ RK×K and then
extrapolate the eigenvectors of A to approximate those of W . A is defined using dominant color vectors µk

introduced by clustering as
A(i, j) = wr(µi,µj) i, j ∈ [1,K]. (16)

The size of A is smaller than that of W ; thus, we can easily compute EVD:

A =

K∑
k=1

λkvkv
T
k , (17)

where λk ∈ R and vk ∈ RK . A matrix B ∈ RK×m for extrapolation is:

B(i, j) = wr(µi, tj) i ∈ [1,K], j ∈ [1,m]. (18)

This matrix is used to extrapolate uk as follows;

uk =
1

λk
BTvk. (19)

These calculations eliminate the computation of EVD of the large matrix W . The computing order of uk in (19)
is O(K) and the computation is required for each convolution; thus, the order of generating decomposed images
for filtering is O(K2). The actual cost is about 2K multiply/addition for the construction of the filtering target
images of uk(τq)fq or uk(τq), respectively. The cost is smaller than the convolution cost, in which the order is
O(K); thus, we can ignore the order in the small K case. For the large K case, the footprint cannot be ignored.

3. PROPOSED METHOD

3.1 PCA

A p-th row of the signals in a matrix representation X ∈ R|Ω|×N with an input data G ∈ R|Ω| is defined as

Xp = [R,G,B], (20)

where p ∈ Ω is an index of data, Ω ⊂ N is a set of all data indices.

We compute the covariance matrix of X for PCA. The matrix can describe as

C = (X − X̄)⊤(X − X̄), (21)
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Figure 2. Approximation results for each order.

X̄ = 1

 1

|Ω|
∑
p∈Ω

Xp

 , (22)

where 1 ∈ R|Ω| is a vector that all elements are 1.

Third, PCA is based on an EVD of the covariance matrix

C = UΛU−1, (23)

where U is a matrix that each column is eigenvector of the C, Λ = diag(λ1 · · · , λN ), λn is a n-th largest
eigenvalue of the C.

Finally, the dimensional reduction of the high-dimensional signals X ′ ∈ R|Ω|×k can described as

X ′
p = XpUk, (24)

where each column of the Uk is an eigenvector that corresponds to the upper k eigenvalues.

3.2 Joint Bilateral Filter

The proposed method represents BF by joint bilateral filtering (JBF). JBF uses another guide image instead of
the input image to determine the weights of the range kernel. Using the input image converted to a single channel
by PCA as the guide image, the curse of dimensionality of CBF can be avoided. JBF and its constant-time one
are defined by:

f̂p =

∑
q∈S ws(p, q)wr(gp, gq)fq∑
q∈S ws(p, q)wr(gp, gq)

, (25)

f̂p≈
∑K−1

k=0 ϕk(gp)
∑

q∈S ws(p, q){ψk(gq)fq}∑K−1
k=0 ϕk(gp)

∑
q∈S ws(p, q){ψk(gq)}

. (26)

gp represents the luminance of the 1-channel guide image. The number of Gaussian filters can be significantly
reduced.



4. EXPERIMENTAL RESULTS AND DISCUSSION

We used the Nyström method as a comparison for the proposed method. The σs = 2, σr = 70, and the
approximation order K = 1 to 20, respectively. PSNR was used for image accuracy, and a compressive bilateral
filter was used as a constant-time BF method. The CPU was an Intel Core i3-8100, 4 cores/4 threads at
3.6GHz. For the approximation accuracy evaluation, the output image from the näıve implementation was used
as the ideal image, and the approximation error was evaluated in terms of PSNR between the filtered image
and the ideal image using each method. 24 Kodak image sets (756× 512) were filtered as input images, and the
average accuracy was estimated. The results show that the proposed method can output sufficient approximation
accuracy at low order, and the filtering time is faster than the Nyström method. The approximation accuracy
of the proposed method reaches a ceiling of 60dB because the guide image has been set to 1-channel.
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