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Abstract—Multiscale processing is fundamental for image pro-
cessing. Most multiscale processing splits signals into base and
detail signals and then manipulates the detail signal. Local
Laplacian filtering (LLF), multiscale processing, has an unusual
form: manipulation and then separation. This structure brings
out the high performance of the filter. However, LLFs are limited
to the form of Laplacian pyramids, which requires downsampling
to create image pyramids; it causes misalignments around edges.
In this study, we break away from the pyramid and extend the in-
terpretation to multiscale filters that locally enhance the contrast.
We propose a local difference of Gaussian (DoG) filter (LDF) for
the solution. DoG filtering can remove the downsampling in the
filter. Moreover, we further improve the computational speed using
the precomputing technique introduced in LLF. Furthermore, to
accelerate it, we utilize O(1) Gaussian filtering for large-scale
filtering. Experimental results show that the proposed method
suppresses overshoot and undershoot around sharp edges caused
by the misalignment. Furthermore, the proposed method can keep
computational speed even when the convolutional radius is large
by O(1) Gaussian filtering.

I. INTRODUCTION

When capturing images, the contrast of the subject cannot
be perfectly transferred due to diffraction of light, aberrations,
surface reflections, and other physical characteristics of light
and lenses. In particular, contrast is low in regions of high spa-
tial frequency. The modulation transfer function expresses this
relationship. Therefore, the image is multiscaled, and a nonlin-
ear contrast transformation function enhances the contrast. In
this study, the value referenced by the contrast transformation
function is changed for each pixel to improve the local contrast.
By improving the contrast at a specific spatial frequency, a
locally good-looking image is generated, and by multiscaling
the image and retaining only the coefficients of the relevant
pixel among the coefficients after processing, more precise
edge information can be obtained than by performing contrast
transformation after multiscaling. In this way, an image with
improved contrast at all positions in the image is obtained by
processing each pixel so that the modulation transfer function
is changed for each pixel.

Manipulation of images with multiscale analysis is a chal-
lenging task. For multiscale processing, an input image is
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decomposed into multiple layers by various methods: Gaus-
sian and Laplacian pyramids [1], wavelet transform [2], and
difference of Gaussians (DoG) form the scale-space analy-
sis [3]. Multiscale processing manipulates coefficients of pyra-
mid, wavelet, or scale-space representations. Then, the layered
signals are collapsed to obtain an output image.

Unsharp masking is a straightforward multiscale process. The
method has two layers: a base layer and a detail layer. The base
layer is a Gaussian/box-filtered image, and the detail layer is
the subtraction of the base layer from the input image. The
detail layer is linearly multiplied to control the enhancement
level. However, this approach produces large halos.

The Laplacian pyramid is utilized to extend two layers to
multiple layers. Pyramid-based processing directly enhances the
pyramid coefficient [4]–[6]. Instead of linear enhancement of
coefficients, S-tone or Gaussian weighting is used to suppress
large amplitude. In the Gaussian pyramid-based approach,
gradients in pyramid images are optimized to scale factors to
avoid halos [7].

The signal decomposition is extended to have an edge-
preserving property. Seminal work uses bilateral filtering [8]
to generate base signals in two-layer decomposition [9] instead
of linear filtering. The cost-consuming part of bilateral filtering
is accelerated by Fast Fourier transform (FFT) [9], and further
accelerated by following accelerated methods [10], [11]. The
two-layer decomposition based on bilateral filtering is extended
to multiple layers using iterative bilateral filtering. Multiscale
bilateral decomposition is accelerated by skipped filtering [12].
Skipping is further accelerated by hardware [13]. This approach
has difficulty in determining parameters to suppress halo and
other edge-reversal artifacts. The following work computes a
multiscale edge-preserving decomposition with a least-square
scheme instead of bilateral filtering [14]. The other extension
uses iterative local linear regression filtering [15], similar to
guide image filtering [16], [17].

The edge-avoiding wavelet [18], [19] is an edge-preserving
extension of the wavelet transform. The method constructs a
basis based on the edge content of the images. The wavelet
becomes non-linear filtering. Also, iterative bilateral filtering-
based decomposition [12] is one of À-Trous wavelet meth-
ods [20]. The method is extended to multilateral filtering for
the computer graphics context [21].

The previous edge-preserving scale-space methods have dif-
ficulty handling each iterative and enhancement processing



parameter. Local Laplacian filtering (LLF) [22] solves the
difficulty. LLF is an extension of the Laplacian pyramid [23] to
have an edge-aware pyramid. This approach locally enhances
the contrast quickly and generates Laplacian pyramids for
each pixel for image detail control. LLF has better visual
quality than other multiscale processing; however, LLF has
a high processing cost. The following works accelerate the
construction per pixel of the Laplacian pyramid: fast LLF [24]
and Gaussian Fourier pyramid [25]. Also, LLF is accelerated
by FPGA [26]. Edge-aware upsampling can also accelerate
filtering, e.g., joint bilateral upsampling [27], guided image
upsampling [28], bilateral guided upsampling [29], and local-
LUT upsampling [30].

The processing flow is the most significant difference be-
tween the previous methods and LLF. Conventional methods,
such as linear filter, edge-preserving smoothing, and wavelet
methods, all perform the following steps: 1) separation, 2)
enhancement, and 3) integration. However, the structure has
difficulty controlling the smoothing level of scale-space and
amplifying each level. Also, it has drawbacks of edge ambiguity
in downsampling, and downsampling-based approaches do not
preserve the translation invariance property.

In contrast, LLF is different: 1) local enhancement, 2)
separation, and 3) integration, where the order of enhancement
and separation is reversed. This processing flow more easily
controls the parameters. In this paper, we break away from
the concept of pyramids and consider a new edge-preserving
scale-space analysis based on the concept of the different pro-
cessing orders. Moreover, the new scale-space method solves
the inevitable aliasing problem of pyramid processing, like the
concept of stationary wavelet transforms [31].

The contributions of this paper are as follows:
• We replace the Laplacian pyramid with the multiscale

filtering of DoG in LLF to increase the controllability and
generality of scale-space named local DoG filter (LDF).

• We accelerate the DoG computation by recent O(1)
Gaussian filtering (GF) with a fast LLF formulation to
accelerate LDF.

II. PRELIMINARY

A. Gaussian Pyramid and Laplacian Pyramid

In this section, we review the Laplacian pyramid. Laplacian
pyramid is used for various applications, such as compres-
sion [23], texture synthesis [32], and harmonization [33].

Here, we introduce the Gaussian pyramid. Let I be an input
image, and let the Gaussian pyramid be defined as the set of
Gℓ[I], where ℓ ∈ L = {0, 1, 2, . . . , ℓmax} ⊂ N. The lowest
level of the Gaussian pyramid is G0[I] = I , and the other level
of pyramids Gℓ+1[I] are equal to the downsampled blurred
image of Gℓ[I]:

Gℓ[I] = downsampling(Gσ ∗Gℓ−1[I]), (1)

where Gσ∗ means Gaussian convolution with standard deviation
σ. The image of Gℓ+1[I] has half the width and height of
Gℓ[I]. Usually, the Gaussian convolution for pyramid building

is implemented using the binomial distribution with five taps
for integer operations, and the regarded standard deviation is
about σ = 1.

The difference between the current-level pyramid and the
upsampled next-level pyramid defines the Laplacian pyramid:

Lℓ[I] = Gℓ[I]− upsampling(Gℓ+1[I]), (2)

where upsampling(·) is an operator that doubles the width and
height of the image size by using a smoothing kernel. Usually,
the smoothing kernel is the same kernel as Gσ . Note that the
highest level of the Laplacian pyramid is Lℓmax

[I] = Gℓmax
[I].

In the Gaussian pyramid, the filtering parameter of each level,
σ, is fixed. Iterative processing and downsampling change each
level’s actual parameter, i.e., equivalent to the full resolution
parameter. The relationship between each scale and actual σℓ

at each level is essential for scale-space analysis.
Here, we show the relationships. Iterative Gaussian convo-

lutions can be merged and represented by one large standard
deviation value by the semi-group property of Gaussian:

Gσ1 ∗ Gσ2 = Gσ, σ =
√
σ2
1 + σ2

2 . (3)

The Gaussian convolution is applied for each level. The σ
for each level becomes the sum of each variance until the
level. Note that the image is downsampled for each level; thus,
the supporting distribution is doubled by the level. The actual
standard deviation for each level σℓ is defined as follows:

σℓ = σ

√√√√ ℓ∑
l=1

2l (ℓ > 0), σ0 = 0, (4)

where σ is the base value of a standard deviation for construct-
ing Gaussian and Laplacian pyramids.

B. Manipulating Laplacian Pyramid

We show the example of manipulating the Laplacian pyramid
for detail enhancement.

We boost the pyramid coefficients for multiscale detail
enhancement except for the coarsest layer of supL. We usually
use an S-tone-like function to suppress overshoot for boosting,
while the most straightforward function is r(x, 0) = kx, where
k > 1 is a constant value. If k = 1, there is no boosting,
and the resulting image is the input image. Note that the
representation of the argument 0 in r(x, 0) is unnecessary for
this case; however, it is used to match the form of the latter
remapping function for the local Laplacian filtering. The later
section refers to the remapping function. Finally, remapped
signals are collapsed to obtain the output image:

O = Lℓmax
[I] +

∑
ℓ∈L\{ℓmax}

r(Lℓ[I], 0). (5)

C. Local Laplacian Filtering

We review the basic structure of local Laplacian filtering
(LLF). In LLF, an output pixel value Op at pixel p = (x, y) is
defined by constructing a pixel-dependent Laplacian pyramid
of the output image, L[O]p, called the local Laplacian pyramid.
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Each level ℓ of pyramid Lℓ[O]p is constructed per pixel. Finally,
the output pixel Op is the summation of the value on p for each
level, i.e., collapsing pyramid:

Op =
∑
ℓ∈L

Lℓ[O]pℓ
, (6)

where pℓ is the relative position of p for each level ℓ, and
becomes sub-pixel. The size of the next level image in the
pyramid is half, so the accessing position of pixel p also
becomes half. For assessing sub-pixel, we interpolate intensity.

There are three steps to compute the coefficient itself
Lℓ[O]pℓ

. First, a remapping function r(·) is applied for the
input image I and then creates the intermediate image Ĩ =
r(I,Gℓ[I]p), where r(·) depends on the coefficient of the
Gaussian pyramid at level ℓ at p. We will discuss the details of
the remapping function later.

Next, we construct a Laplacian pyramid of the remapped
image Lℓ[Ĩ], and then we select a pyramid coefficient at p that
is Lℓ[Ĩ]p as an output coefficient of Lℓ[O]p. By repeating this
process in all positions p and levels ℓ, we can get the Laplacian
pyramid of the output pyramid L[O].

Finally, we get the output image by collapsing the
pyramid L[O]. The computational cost of this process is
O(σ|L|N logN) per pixel, where N is the number of image
pixels. The separable Gaussian filtering requires O(σ) for each
level |L|, and a pyramid requires contains N logN pixels.

Careful implementation can reduce the processing pyramid
size. Let R ∈ N be the convolution radius: R = ⌈nσ⌉, n ∈ R,
usually n = 3.0. The deep pyramid layer hierarchy requires
outside pixels of the shallower layers. The required outside
radius at level ℓ is defined as follows:

Rl = R

l∑
ℓ=0

2ℓ, (7)

Therefore, we require 2 ∗Rl+1 pixels to build a pyramid. For
example, Rl ∈ {1, 3, 7, 15, 31, 63, 127, . . .}. Rl is exponentially
increasing; thus, the trimmed pyramid size can rapidly reach
the maximum size of N .

The approximated acceleration of LLF, called fast LLF [24],
can reduce the order O(σ|L||I|) per pixel, where |I| ∈ N is
the number of approximation samples. The method builds a
limited number of pyramids and then blends the pyramid to
approximate the result.

D. Remapping Function

The remapping function is defined as:

r(x, g) = x− (x− g)f(x− g), (8)

where, x is input signal intensity, and g is the controlling center
value. This function enhances/smooths signals. In LLF, g =
Gℓ[I]p, where Gℓ[I]p is a coefficient of a Gaussian pyramid,
while f is specifically defined for each application. This paper
used the Gaussian function with multiplying factor m as f .

f(x− g) = m exp

(
(x− g)2

−2σ2
r

)
(9)

(a) detail smoothing (b) detail enhancement

Fig. 1: . Remapping functions (m = 1).

The sign of m switches enhancing or smoothing signals, and
the magnitude control strength of signal control. Figure 1 shows
an example of remapping functions.

III. PROPOSED METHOD

We extend the concept of LLF to a multiscale filter that
manipulates the contrast in advance, named Local DoG Filter
(LDF). Furthermore, the LDF is accelerated using the fast
LLF form. Moreover, we use O(1) Gaussian filtering (GF) for
further acceleration.

A. Definition

Under the concept of LDF, The difference between LDF
and LLF is the scale-space structure: pyramid or DoG. In
conventional LLF, the image at level ℓ+1 is a quarter-size
image at ℓ due to downsampling. In contrast, the LDF’s image
size of each level ℓ is equal due to no downsampling.

First, we build the scale-space blurring representation instead
of the Gaussian pyramid. The definition of scale-space Gℓ[I]
is as follows:

Gℓ[I] =

{
I (ℓ = 0)

Gσℓ
∗ I (otherwise).

(10)

Here, we redefine Lℓ[O] at a pixel p by using DoG. DoG
filtering means the difference between two GFs that have
different σ values; thus, Lℓ[O]p is defined as follows:

Lℓ[O]p =


(Gσℓ

∗ r(I,Gℓ[I]p)− Gσℓ+1
∗ r(I,Gℓ[I]p))p

(0 ≤ ℓ ≤ ℓmax − 1)

(Gσℓ
∗ I)p (ℓ = ℓmax),

(11)

where σℓ is the Gaussian scale parameter for each level ℓ. Steps
between each level σℓ depend on the applications and have
more flexibility than the Laplacian pyramid. For example, we
can set a small step when fine scaling is required. In this paper,
however, we apply (4) for comparison with conventional LLF.

Finally, an output value Op is obtained by collapsing the
DoG stack:

Op =
∑
ℓ∈L

Lℓ[O]p. (12)

We do not need upsampling and downsampling, unlike the
pyramid-based LLF.
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The required number of pixels for a DoG kernel is σ2, and
each level does not have dependency. Moreover, we can com-
pute a pixel using a convolution. In this case, separable filtering
is ineffective since separable filtering is used to convolute whole
pixels. Therefore, the order is O(|L|σ2) per pixel. LLF requires
O(σ|L|N logN), larger than our representation.

B. Acceleration

Here, we rewrite the LDF representation for acceleration.
We call the accelerated method fast LDF. The concept is that
r(I,Gℓ[I]p) in (11) has a limited number of variations. Let a
sample i be an integer value, i ∈ I ⊂ Z. First, remapping
images Ri are prepared for each intensity i:

Ri = r(I, i) ∀i ∈ I. (13)

Second, the DoGs for each remapping image are built:

Lℓ[Ri] = Gσℓ
∗ Ri − Gσℓ+1

∗ Ri ∀i ∈ I. (14)

Eqs. (13) and (14) do not exist pixel accessing operator p since
processing for each pixel is the same. Thus, the GF in (14)
can be regarded as the usual GF for entire images. GF can be
accelerated using the usual approaches, such as FFT, discussed
in the following.

Next, DoGs of the remapped images are combined with the
local Laplacian DoG by referring to the Gaussian stacks of (10):

Lℓ[O]p =
∑
i∈I

w(Gℓ[I]p,Ri
p)Lℓ[Ri]p, (15)

where w is the weight function for the linear interpolation.
Equation (14) sums up each DoG of the remapped image
weighted by w. Finally, we can obtain an output value Op by
collapsing the DoG based on (12).

Here, we discuss Gaussian convolution in (14). The order of
fast LDF with the naı̈ve implementation of GF is O(|I|σ2). We
perform |I| times GFs for each pixel, and the order of GF is
O(σ2) per pixel. A separable representation can reduce the GF
order to O(σ). In this case, the LLF order is O(N |I|σ), which
is the same as the conventional method of ”fast” LLF. The GF
is further accelerated by constant-time algorithms, which have
two representations: infinite impulse response (IIR) and finite
impulse response (FIR).

Typical examples of the IIR filter are the addition model [34]
and the multiplication model [35]. The order of these methods
is O(K) per pixel, where K is the approximate order. However,
the implementation of IIR is not faster than the implementation
of recursive FIR [36]. In terms of FIR approximation meth-
ods, sliding DCT-based GF has been proposed [37]–[43]. The
computational order of this method is also O(K). Currently,
sliding DCT-based GF has the best performance in terms of
accuracy and processing speed [42]. Therefore, we use the
sliding DCT-based GF for the implementation of LDF. The
parameter of K is independent of the filtering parameter of σ,
so the approximation has a constant-time property for σ. Using
constant-time GF, the order of LDF is O(|I|K), named fast
O(1) LDF because the algorithm is constant for σ.

(a) Input Image
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Fig. 2: Results of each method (σr=20, ℓmax=2).
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Fig. 3: a) Profile plot of Fig. 2i, Fig 2j, and the input image.
b) PSNR between naı̈ve Gaussian filtering and upsampled
Gaussian filtering in the Gaussian pyramid.

IV. EXPERIMENTAL RESULTS

We demonstrate the performance of the LDF, fast LDF, and
fast O(1) LDF on accuracy and speed. The code is written
in C++ with OpenMP parallelization and AVX vectorization.
The CPU tested is the Intel Core i9–9980XE (3.0 GHz, 18-
cores/36-threads). We remove subnormal numbers in Gaussian
distributions for acceleration based on [44].

First, we compare the output images of various methods:
pyramid-enhancement of Eq. (5), multiscale bilateral decom-
position filter (MBDF) [12], LLF [22] and the proposed LDF.
Pyramid and MBDF are preenhancement methods. Figure 2
shows the output of these images and the profile plots of each
signal. These images have two σs settings: σs ∈ {0.3,

√
2}. The

pyramid has halos, while the other methods solve the problem.
MBDF has edge reversals (e.g., the leaf contour in the image’s
upper left corner), while LLF and LDF solve the problem. LLF
and LDF in σ =

√
2 have almost the same response, whereas,

in the smaller case of σ = 0.3, the results are different.
Figure 3(a) shows the profile plots then σ = 0.3. The
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Fig. 5: Processing time of selected methods in Fig. 4. The Y
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responses differ, while the case σ =
√
2 is almost the same.

The difference between high-level signals and low-level signals
generates a Laplacian pyramid. The low-level signals are an
approximation of Gaussian filtering using the semigroup prop-
erty and downsampling. Figure 3(b) shows the approximation
accuracy of Gaussian filtering. Due to downsampling, aliasing
is produced in a small σs case; therefore, the accuracy of
the approximation is low. The low approximation accuracy
produces the difference between LLF and LDF.

Figure 4 shows the computational time (log scale in Y) of
each method: naı̈ve LLF [22], fast LLF [24], naı̈ve LDF, fast
LDF, fast O(1) LDF. Naı̈ve LLF requires many processing
areas, while naı̈ve LDF needs less area; thus, the processing
time of LDF is faster than the naı̈ve LLF. For the other case,
Fig. 5 shows faster plots with the removal of the logarithmic
scale. The computational time of fast LDF and fast LLF is
proportional to σ, while fast O(1) LDF exhibits a constant
time property. Except for the tiny sigma case (around σ = 1),
the proposed method is faster than the other. Note that due to
cache efficiency, when σ is small, the naı̈ve GF implementation
is faster than the O(1) GF-based one.

V. CONCLUSION

This study proposed a local DoG filter (LDF) that creates
image pyramids without downsampling. The pure definition
of the proposed method generates DoG per pixel; however, it
is more efficient than naı̈ve LLF. Furthermore, we accelerate
it by changing the form to share the convolution between
pixels. Moreover, we use constant-time Gaussian filtering to
accelerate large-scale filtering. In our future work, we extend
the method to have color space [45] and to perceptually enhance
images [46].
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