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ABSTRACT

Gaussian filtering (GF) is a fundamental smoothing filter that determines the weights in the kernel according
to the Gaussian distribution. GF is an essential tool in image processing and is used in various applications.
Therefore, accelerating GF is essential in various situations. The sliding DCT-based GF is one of the fastest
methods for approximating GF. The Gaussian kernel is decomposed into multiple cosine kernels using the DCT
transform and is approximated by the limited number of kernels. When calculating the period of the DCT
for fitting the best length, a linear search method is used; however, the brute-force search has a significant
impact on the filtering processing time. In this paper, we accelerate the period estimation by polynomial fitting.
Experimental results show that the proposed method has almost the same accuracy as the brute-force approach.
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1. INTRODUCTION

Gaussian filtering (GF) is an essential tool for image processing and is adopted in various applications: pre-
filtering, scale-space analysis,1–4 feature description,5 saliency map,6 internal processing of edge-preserving fil-
ters (accelerated bilateral filtering,7–14 guided image filtering,15,16 and high dimensional Gaussian filtering17,18)
image quality indices of structural similarity index measure (SSIM),19,20 blur removal processing,21–23 and high-
dynamic range imaging (HDR).24 Hence, the accelerated GF is of practical significance for various tasks.

The computational order of GF for the straightforward implementation is O(R2) per pixel, where R ∈ N is the
kernel radius, and the implementation is identical to 2D finite impulse response (FIR) filtering. Separable FIR
filtering and frequency domain filtering are well-known techniques to speed up the filtering process. The separable
FIR filtering reduces GF’s order to O(R), and the frequency domain filtering also reduces it to O(logN), where
N ∈ N is the number of image pixels. Note that the frequency domain filtering is required to transform an image
and the Gaussian kernel to frequency components by a fast Fourier transform (FFT) or discrete cosine transform
(DCT); the transformation becomes offset processing.

The sliding-DCT-based GF is a state-of-the-art method.25–27 The order of the filter is O(K), where K ∈ N
is the approximated order, which is independent of R. The sliding transform can be realized by various DCT
definitions, such as DCT-1 to DCT-8. In particular, the DCT definitions with odd numbers (DCT-1,3,5,7) can
be used to approximate the Gaussian kernel.26 We show the sliding DCT-based GF:

g(σ, x)≈ ĝtype(σ, x,K, T )=ασ,0+2

K∑
k=1

ασ,k cos

(
2π

T
kx

)
, (1)

where g is the convolution kernel and ĝtype is its approximated one of DCT-1, 3, 5, or 7 with the order K. aσ,n
is the transformed coefficient for each σ and k. Here, we need frequency period T for each DCT type, order,
and σ; thus, T is computed by changing these parameters. However, the period computation is cost consuming.
Sugimoto et al. 9 proposed a closed-form solution, which is fast but still has room for accuracy improvement
reported in their following paper.26

This paper solves the limitation of the accuracy and speed of the GF. The contributions is as follows:

• We propose an accurate sliding-DCT-based GF using the optimized period T by using brute-force search.

• Also, we propose its accelerated method by using polynomial fitting.
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2. SLIDING DCT-BASED GAUSSIAN FILTERING

The multi-dimensional GF can be decomposed into multiple one-dimensional GFs due to its separable property.
Therefore, we introduce the procedure for sliding DCT-based GF in the one-dimensional case. First, the definition
of a Gaussian kernel is expressed as follows:

gn = η−1 exp

(
− n2

2σ2

)
, η =

R∑
n=−R

exp

(
− n2

2σ2

)
, (2)

where σ is the standard deviation of the Gaussian distribution, and R is the filtering radius. The computational
order is O(R). Usually, R = d3σe or d6σe. The FIR convolution of the kernel is defined as:

(f ∗ g)x =

R∑
n=−R

fx+ngn, (3)

where fx (fx ∈ R ⊂ R, x ∈ X ⊂ N) is input signals, and gn (n = −R, . . . , R) is Gaussian kernel weights. Note
that R = {0, . . . , 255} is a dynamic range, and X is image area number. We can transform the Gaussian kernel
to the linear summation of cosine function by DCT since the Gaussian function is an even function:

gn =

R∑
k=0

GkC
(k)
n , C(k)

n = cos(φ(k + k0)(n+ n0)), (4)

where Gk (k = 0, 1, . . . , R) is the DCT transformed coefficient from gn, and φ = 2π
T . Eq. (4) is the inverse DCT

expression of the kernel. The variables T , k0, and n0 depend on the type of DCT that are summarized in Tab. 1.
Note that DCT-1 and -5 have DC components because k0 = 0. Based on (2), Gk can be approximated as:

Gk '
cke
− 1

2σ
2φ2(k+k0)

2∑K
k=0 cke

− 1
2σ

2φ2(k+k0)2
, ck =

{
1 (k = 0)

2 (otherwise)
(5)

Substituting (4) into (3) yields:

(f ∗ g)x =

R∑
n=−R

R∑
k=0

fx+nGkC
(k)
n =

R∑
k=0

GkF
(x)
k , (6)

F
(x)
k =

R∑
n=−R

fx+nC
(k)
n , (7)

where F
(x)
k is a DCT coefficient of the partial signals extracted from the window at the coordinate x of input pixel

value. Formula (6) indicates that the output value of convolution for coordinate x is the inner product between
the partial signals extracted from the window and the kernel, which is equal to the inner product between the
transform coefficient of the kernel and the transform coefficient of input signals.

The spatial filtering is accelerated by truncating the DCT coefficients, i.e., setting the approximation order
K(≤ R). The approximation is defined as follows:

(f ∗ g)x =

R∑
k=0

GkF
(x)
k '

K∑
k=0

GkF
(x)
k . (8)

Table 1. Parameters of T, k0, n0for DCT-1, 3, 5, 7.
DCT-type T k0 n0

DCT-1 2R 0 0
DCT-3 2R+ 2 1

2 0
DCT-5 2R+ 1 0 0
DCT-7 2R+ 1 1

2 0



The computational order of F
(x)
k is O(R) for each k; thus, the total computational order of (8) is O(KR), which

is larger than the näıve 1D GF, which is O(R). The sliding transform can calculate F
(x)
k in O(1) order;25 thus,

we can reduce the order from O(KR) to O(K).

When K = ∞, the period is ∞; however, the optimal value is shorter in the approximated computation.
Sugimoto et al. minimize the following closed-form to obtain T for DCT5:

E(T ;K,σ) = erfc(
2T + 1

2σ
) + erfc(πσ

2K + 1

2T + 1
) (9)

TK,σ,type = arg min
t

E(t;K,σ, type), (10)

where type = 5. The solution uses approximation for the error function; thus, the accuracy tends to decrease.

3. PROPOSED METHOD

In this paper, we directly minimize the difference between the kernel and the approximation function. The period
T is computed to minimize the following:

E(T ;K,σ, type)=
1

|R|
∑
r∈R

(g(σ, r)− ĝtype(σ, r,K,T))2, (11)

Given type,K, σ, we compute the error of (11) to linearly change t for the brute-force search (Eq. (10)). Figure 1
shows the difference between the period T obtained by Eq. (9), (10) and various coefficients of σ for R. Since
the response repeats in cycles, we need a long period enough to cover the Gaussian tail. However, there is a
trade-off because the longer period is the more difficult to represent the response with fewer coefficients.

Eq. (11) does not have the closed-form solution without approximation; thus, we full search the candidates,
but it is cost-consuming. For acceleration, we approximate the search by polynomial fitting for two variables: K
and σ. The two-variable-fitting is usually complex; however, we can use the relationship between radius and σ.
For usual FIR filtering, we set r = daσe, a ∈ R, i.e., the radius is linear to σ. Directly using the fact, the N -th
order polynomial fitting is as follows:

T ′ = bσ
n=N∑
n=0

(cnK
n) + 0.5c (12)

where cn, n ∈ {0, 1, . . . , N} are polynomial coefficients, and the coefficients are obtained by solving a Vander-
monde matrix. The rounding value is used for the integer radius.

Furthermore, we can add an offset term b for more accuracy.

T ′ = bσ
n=N∑
n=0

(cnK
n) + b+ 0.5c (13)

(a) (b)

Figure 1. Gaussian kernel approximated by DCT-5 when σ is 10 and the approximation order K is 3. (a) Approximation
by DCT-5 when the coefficient for σ of R in the period T is changed from 0.5 to 3. (b) The purple color represents the
Gaussian kernel when σ is 10 in Eq. (2), the green color uses the period T obtained by the Eq. (10), and the blue color
also obtained by the Eq. (9).



We can obtain these fitting results by solving the following Vandermonde-like matrix, V C = T :

1 σ0 x0,0 x20,0 · · · xN0,0
1 σ1 x1,0 x21,0 · · · xN1,0
...

...
...

...
. . .

...
1 σ` x`,0 x2`,0 · · · xN`,0
1 σ0 x0,1 x20,1 · · · xN0,1
1 σ1 x1,1 x21,1 · · · xN1,1
...

...
...

...
. . .

...
1 σ` x`,1 x2`,1 · · · xN`,1
...

...
...

...
. . .

...
1 σ0 x0,m x20,m · · · xN0,m
1 σ1 x1,m x21,m · · · xN1,m
...

...
...

...
. . .

...
1 σ` x`,m x2`,m · · · xN`,m




b
c0
c1
...
cN

 =



Tk0,σ0,type

Tk0,σ1,type

...
Tk0,σ`,type

Tk1,σ0,type

Tk1,σ1,type

...
Tk1,σ`,type

...
Tkm,σ0,type

Tkm,σ1,type

...
Tkm,σ`,type



, (14)

where x`,m = σ`km; km ∈ {1, 2, . . . ,Kmax} σ` = σmax−σmin

δ `+ σmin. Kmax is the max value of in fitting range of
K. For σ, we resample the continuous value of σ by interval δ in the possible min/max range: σmin and σmax.
The size of the matrices are as follow: V (N+2)×δKmax , C1×(N+2), and T 1×δKmax . For Eq. (12), we can solve the
matrix by removing the elements of 1 and b from the matrix. Note that we can use only the resulting coefficients
for filtering; thus, we can omit the computation of the matrix solving.

4. EXPERIMENTAL RESULTS

In our experiment, we verified the effectiveness of the proposed method. We changed the truncated parameter:
1 ≤ K ≤ 15 sampled at the interval of 1, standard deviation: 2.1 ≤ σ ≤ 10 sampled at intervals of 0.1. Also, we
changed the DCT types: 1, 3, 5, and 7. The tested image size was 512× 512. The tested code was optimized by
AVX and compiled by Visual Studio 2019 on AMD Threadripper 3970X.

Table 2 shows the sum of absolute difference (SAD) of all samples of K and σ,
∑
K,σ |Tσ,K − T ′σ,K |, and

the maximum absolute difference (MAD) of |Tσ,K − T ′σ,K | in Eq. (12) and Eq. (13) after fitting with N = 7.
The approximation with offset is more accurate than without offset, and our method can predict radius within
floating rounding error, i.e., ±1.

Figure 2 (a) shows the computation time of the predictions at σ = 10. The brute-force search takes 4.38ms
at the order 15, while our method requires only a few tens of clock cycles, i.e., it is on the order of nanoseconds.
Figure 2 (b) shows the processing time of filtering, including the prediction. The previous GF at the order 15
and σ = 10 takes 5.09ms, while the proposed method takes 0.821ms; thus, the brute-force search takes longer
than filtering itself. Figure 2 (c) shows the PSNR for evaluating the approximation accuracy. The proposed and
brute-force methods have higher accuracy than the closed-form solution. Also, the proposed method has almost
the same processing speed as the closed-form solution.

Figure 3 shows that predicting result for each parameter with equation (13). We can predict the same value
in most cases, and even if the predicted value deviates from the correct one, the difference between the two values
is so slight that it does not significantly affect the output image.

Table 2. Errors with and without offset (N = 7) for each DCT type.

DCT 1 DCT 3 DCT 5 DCT 7
without offset (12) SAD 53 286 215 226

MAD 1 1 1 1
with offset (13) SAD 46 61 68 81

MAD 1 1 1 1



(a) time: period computing (b) time: filtering (c) PSNR

Figure 2. (a) processing time of only predicting T . (b) the filtering processing time including the predicting T ;the lines
of the closed-form and proposed are covered for (a) and (b). (c) PSNR for each method; the lines of the brute-force and
proposed are covered. (DCT-5, σ = 10 for each plot).

(a) DCT-1 (b) DCT-3

(c) DCT-5 (d) DCT-7

Figure 3. Predicting results for each type and parameters σs in K = {1, 2, . . . , 8}.
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