
Accelerating Finite Impulse Response Filtering
Using Tensor Cores

∗Takumi Kondo, †Yoshihiro Maeda, and ∗Norishige Fukushima
∗Nagoya Institute of Technology, Japan
†Tokyo University of Science, Japan

Abstract—This paper studies how to accelerate a single channel
2D image convolution using NVIDIA’s Tensor Core. Tensor Core
is a dedicated arithmetic unit for speeding up matrix products
and was proposed to speed up the convolution in machine
learning. From the Volta architecture of NVIDIA’s GPU, Tensor
Core is utilized for various applications. The Tensor Core is not
limited to machine learning but various applications. This paper
focus acceleration of image convolution of a single-channel filter
of finite impulse response (FIR) filtering. Usually, Tensor Core is
used for multi-channel convolution; thus, direct usage of Tensor
Core cannot maximize the performance of the usual FIR filtering.
Therefore, we propose three programming patterns for parallel
processing of FIR filtering: kernel-loop unrolling, kernel-image-
loop unrolling, and diagonal kernel-image-loop unrolling. Our
experiments compare the proposed loop unrolling methods for
linear time-invariant (LTI) and variant filters (LTV): Gaussian
filtering and bilateral filtering. The results show that Tensor
Core can accelerate the convolution for LTI filters but cannot
accelerate linear LTV filters. Also, we compare the two GPU
architectures of Turing and Ampere, and we can accelerate the
LTI filter using TCs in both architectures.

I. INTRODUCTION

Image filtering is an essential tool for image processing,
and neighborhood filtering, i.e., finite impulse response (FIR)
filtering, is fundamental. These filters are used for various
applications: edge detection [1], scale-space analysis [2], de-
noising [3], [4], [5], detail enhancement [6], high-dynamic
range imaging [7], dehazing [8], [9], style transfer [10],
depth filtering [11] image quality assessment [12], and image
compression [13], [14], [15].

The computational order of the naı̈ve FIR convolution is
O(r2), where r is the filtering radius; thus, its computational
time becomes long when r is large. Therefore, acceleration
algorithms for specific filters are proposed. For example,
Gaussian filtering is accelerated by separable convolution
and fast Fourier transform (FFT), traditionally. The recursive
approximations [16], [17] and sliding discrete cosine transform
methods [18], [19] further accelerate the Gaussian filtering. In
the bilateral filtering [4] cases, there are many accelerating ap-
proaches [20], [21], [22], [23], [24], [25], [26]. Look-up-table
approaches can accelerate any filters [27], [28]. However, these
algorithms are insufficient scalability for massively parallel
computing such as graphic processing units (GPUs). Under
the insufficient parallelability algorithm, naı̈ve implementation
with GPUs is faster than the optimized algorithms.

This work was supported by JSPS KAKENHI (21H03465, 21K17768).

GPUs have several to several hundred times the number of
cores of CPUs and can achieve high computational speed by
parallelizing computations. Moreover, in May 2017, NVIDIA
releases Volta architecture equipped with units of Tensor
Cores (TC) [29], hardware dedicated to matrix-multiply-and-
accumulate operation on a 4 × 4 matrix in one GPU clock
cycle. TCs perform matrix multiplication with input data in
half floating-point precision and the accumulation in 32-bit
single-precision in mixed-precision mode.

The TCs is developed for deep learning, consisting of the
multi-channeled convolution, represented by matrix-multiply
operations. However, various image processing techniques
used the matrix-multiply operations, such as FFT [30]. Also,
TCs is used for various tasks [31]. Moreover, TCs is effective
for reduction and scan parallel computing pattern [32], which
are used in various image processing. In addition to NVIDIA
GPUs, accelerating matrix-multiply is also possible with
ACIS, such as Google’s Tensor Processing Unit (TCP) [33]
and Intel Movidius Myriad 2 [34]. CPU extensions for the
matrix-multiply unit will include the Intel Advanced Matrix
Extension (AMX), which will be available from the Sapphire
Rapids architecture, and the ARM Scalable Matrix Extension
(SME), which will be available from Armv9-A. Moreover, the
computing unit is extended for Halide [35], [36], [37], which
is a domain specific language for image processing, to utilize
TCs [38] for easy to use TCs. Therefore, the usage of the
matrix-multiply unit will become more common in the future.

In this paper, we study how to accelerate a single-channel
2D image convolution using TCs in GPUs. TCs prefers multi-
channel convolutions; thus, the single-channel convolution
cannot maximize the performance of TCs by usual usage.
This paper proposes three loop unrolling patterns for parallel
programming using TC: kernel-loop unrolling, kernel-image-
loop unrolling, and diagonal kernel-image-loop unrolling to
maximize the performance. Also, we compare the speed of
two types of filters to verify the variation of filters: linear
time-invariant (LTI) filter and linear time-variant (LTI) filter.

II. FIR IMAGE CONVOLUTION

We review two types of FIR filters of LTI and LTV filters.

A. Linear Time-invariant Filter

LTI filters are linear and time-invariant filters, i.e., the kernel
weight is constant for each pixel. LTI filters include moving-
averaging filtering, Gaussian filtering, Sobel filtering, Prewitt



filtering, Laplacian filtering, Gaussian of Laplacian filtering,
Gabor filtering. The definition of the LTI is defined as follows:

Ī(p) =

∑
q∈N(p)W (p, q)I(q)∑

q∈N(p)W (p, q)
(1)

where I(q) is an image intensity at a pixel q, and Ī(p) is an
output intensity at p. The weight function W (p, q) indicates a
kernel weight between a focusing pixel p and a neighborhood
pixel q. The LTI weight function is fixed for each pixel; thus,
when both the pixel of the focusing and the neighborhood
pixel are shifted by one position, they are constant; W (p, q) =
W (p + 1, q + 1). Therefore, the LTI filter is a time-invariant
filter. The LTI convolution weight does not depend on the
luminance value of the focusing pixel, but it only depends on
the relative position of reference pixels. For example, we show
the weight of the Gaussian filtering:

W (p, q) = exp

(
−‖p− q‖22

2σ2
s

)
, (2)

where, σ is a standard deviation parameter of the Gaussian
distribution, and ‖ · ‖ indicates the L2 norm function.

B. Linear Time-variant Filter

An LTV filter has linearity and time degeneration, including
a parameter adaptive LTI filter, a wavelet transform, and a
bilateral filter. Here, we define bilateral filtering:

Ī(p) =

∑
q∈N(p) ωs(p, q)ωr(I(p), I(q))I(q)∑

q∈N(p) ωs(p, q)ωr(I(p), I(q))

ωs(p, q) = exp

(
−‖p− q‖22

2σ2
s

)
ωr(I(p), I(q)) = exp

(
−‖I(p)− I(p)‖22

2σ2
r

) (3)

where ωs(p, q) is the same weight function of Gaussian
filtering; thus, the weight has time-invariant property. By
contrast, ωr(I(p), I(q)) refers to the luminance value of the
pixel of interest, its weight changes depending on the pixel of
interest. Therefore, the filter is a time-varying function.

III. CONVOLUTION ON GPU

A. Graphic Processing Unit

NVIDIA’s GPUs consist of Streaming Multiprocessor (SM)
units, and each SM contains four sub-cores. Each sub-core
contains INT32, FP32, and FP64 processors and TC. The
consumer GPU’s micro-architectures are Pascal (GTX 10,
2016), Turing (RTX 20, 2018), and Ampere (RTX 30, 2020)
in NVIDIA GeForce. The professional usage GPUs are Pascal
(Tesla P100, 2016), Volta (Tesla V100/Titan V, 2017), and
Ampere (A100, 2020). In the current newest GPU of A100
GPU, they consist of the following [39].
• SMs: 128 (16 SM/Graphics Processing Cluster (GPC))
• INT32 CUDA Core: 64 per SM
• FP32 CUDA Core: 64 per SM
• FP64 CUDA Core: 32 per SM
• TC: 4 per SM

TABLE I
MATRIX LAYOUT THAT CAN BE COMPUTED WITH WMMA API

instruction Input Type Accumulation Type Possible size
DMMA double (FP64) double 8× 8× 4

HMMA (TF32) TF32 float (FP32) 16× 16× 8
HMMA (bfloat16) bfloat16

16× 16× 16
32× 8× 16
8× 32× 16

HMMA (FP16) half (FP16) half
float

IMMA (8 bit) char
unsigned char

integer (INT32)IMMA (4 bit) u4 (4 bit unsigned)
s4 (4 bit signed) 8× 8× 32

BMMA (1 bit) b1(1 bit) 8× 8× 128

CUDA Cores are usual arithmetic computing unit, and TC
is an arithmetic computing unit that performs matrix-multiply
operations at high speed, and the Volta micro-architecture
firstly mounts it. Volta and Turing architectures have 8 TCs per
SM. Each TC can perform 4×4×4 matrix-multiply operations
in one clock cycle, equivalent to performing 64 FP16/FP32
mixed-precision fusion multiply-accumulate (FMA) operations
in one clock cycle. The Ampere architecture has only 4 TCs
per SM, while it has the 3rd generation TCs, which can
perform 8 × 4 × 4 (GA102) or 8 × 8 × 4 (GA100) matrix
multiply per a clock. Therefore, the Ampere architecture has
twice the processing power per one TC compared to the Volta
and Turing.

The lowest level interface to program the usage of TCs is
CUDA warp matrix multiply accumulate (WMMA) API [29].
TC is executed in a synchronized manner at the warp level
(32 threads). The computable matrix size is represented by
M×N×K, which represents the following matrix operations.

AM×K ×BK×N + CM×N = DM×N

dij = cij +
∑
k

aikbkj
(4)

The Ampere architecture’s TC supports various data types,
and also supports the computable matrix size depending on the
data type shown in Tab. I. We note that while TCs implements
4 × 4 × 4 matrix multiplications in hardware, WMMA API
allows us only to compute larger matrix multiplications than
the minimum size. The large size is the warp-level primitive.

B. Loop Unrolling for SIMD

Single instruction multiple data (SIMD) computing is a par-
allel processing type categorized by Flynn [40]. SIMD com-
puting simultaneously computes multiple data with a single
instruction. In GPU, single instruction multiple threads (SIMT)
is a similar computing type. Also, the Tensor Core instruction
can compute SIMD type parallelization for the matrix multiply
operation. This section reviews SIMD computing for standard
computing units such as CUDA Core.

Using SIMD computing, loop unrolling for handling mul-
tiple data is essential. In the FIR filtering, there are three
loops: image-loop, kernel-loop, and color-loop [41]. Generally,
the used image data structure is Array of Structure (AoS),
which interleaves multi-channel information in the most inner
loop. For example, the RGB image format with AoS data
sequence is RGBRGB...RGB. The SIMD unit loads data
consecutively for the number of simultaneous calculations;



Algorithm 1 Image loop
Require: image, kernel

For (i = 0, i <image.height, i = i+ 1)
For (j = 0, j <image.width, j = j + 4)

acc0=acc1=acc2=acc3=0
For (k = 0, k <kernel.size, k = k + 1)

acc0 = acc0+W (k)I(j + k.x+ 0, i+ k.y)
acc1 = acc1+W (k)I(j + k.x+ 1, i+ k.y)
acc2 = acc2+W (k)I(j + k.x+ 2, i+ k.y)
acc3 = acc3+W (k)I(j + k.x+ 3, i+ k.y)

Algorithm 2 Kernel Loop (4 pixels)
Require: image, kernel

For (i = 0, i <image.height, i = i+ 1)
For (j = 0, j <image.width, j = j + 1)

acc=0
For (k = 0, k <kernel.size, k = k + 4)

acc = acc+W (k0)I(j + k0.x, i+ k0.y)
acc = acc+W (k1)I(j + k1.x, i+ k1.y)
acc = acc+W (k2)I(j + k2.x, i+ k2.y)
acc = acc+W (k3)I(j + k3.x, i+ k3.y)

thus, loop unrolling color loop requires the number of vector
length color channels, e.g., eight channels in CPU’s AVX, 16
channels in CPU’s AVX, 32 channels in GPU’s warp unit. For
this case, we usually change the data structure from AoS to
the structure of array (SoA) format. The structure has color
channels in the most outer loop, e.g., data arrangement is
RR...RGG...GBB...B. After SoA transformation, we can unroll
data in the image-loop or kernel-loop direction. Note that in
the signal channel case, which is the target of this paper, the
data structure is SoA in default.

The kernel-loop unrolling merges elements in kernel loops
and computes a pixel shown in Algorithm 1. The image-loop
unrolling merges elements in image pixel-loops and computes
the data with the same kernel value shown in Algorithm 2.
Note that image size is width × height. Kernel size is also
2D; however, the shape is arbitrary, such as square or circle.
Therefore, we represent kernel loop as 1D, which collapses
the 2D arbitrary kernel loop into 1D.

IV. PROPOSED METHOD

The convolution order represented using TCs is different
from the SIMD cases. This paper introduces three cases:
kernel-loop unrolling, kernel-image-loop unrolling, and diag-
onal kernel-image-loop unrolling. Here, we assume that we
have 3× 3 TCs for ease of explanation.

A. Kernel-loop Unrolling

We introduce the kernel-loop unrolling. The kernel-loop
unrolling can be achieved by transposing the kernel matrix
and the pixel value matrix as the input matrix. An example
of the kernel loop unrolling for 3× 3 convolution is shown in
Fig. 1. First, we load 3× 3 patch with the transpose of image

Fig. 1. Kernel-loop unrolling in TC.

and store its relative weights to TCs. Next, we perform matrix
multiply to compute simultaneously. Since the corresponding
elements of the kernel and pixel value at the pixel of interest
are the sum of the products of the n-th row and n-th column,
the calculation results of the corresponding elements appear
in the diagonal components. Finally, the total of the diagonal
elements is the output of the kernel loop unrolling.

Here, we explain the computational flow as a matrix mul-
tiply form: D = A× B + C. Let pi,j be the shifted position
p = (x, y) by (i, j): pi,j = (x + i, y + j). We here consider
matrix-multiply elements as a convolution result. We set a
transposed input weight matrix W (p, q) as A, and a input
image matrix I(q) as B. Note that the accumulation matrix
C is a zero matrix. The output element dpi,j

∈ D is calculated
as follows:

dpi,j
=

∑
k∈{0,1,2}

W (pk,i, qk,j)I(qk,j). (5)

In the diagonal elements cases, i.e., i = j, i ∈ {0, 1, 2}, the
equation is as follows:

dpi,i
=

∑
k∈{0,1,2}

W (pk,i, qk,i)I(qk,i). (6)

This means that dpi,i is the result of the convolution of the
i-th column: I(p1,1) =

∑
i dpi,i

.
When we replace the pixel values with the bilateral range

weights or bilateral range weights multiplied by pixel values,
the convolution becomes the bilateral filter’s denominator or
numerator, respectively. The numerator is defined as follows:

dpi,i=
∑

k∈{0,1,2}

(
ωs(pk,i, qk,i)

)(
ωr(I(pk,i),I(qk,i))I(qk,i)

)
. (7)

Also, the denominator is defined as follows:

dpi,i
=
∑

k∈{0,1,2}

(
ωs(pk,i, qk,i)

)(
ωr

(
I(pk,i), I(qk,i)

))
. (8)

This method only uses diagonal elements; thus, computa-
tional efficiency is not high.

B. Kernel-image-loop Unrolling

We introduce the kernel-image-loop unrolling. The kernel-
image-loop unrolling using TC is shown in Fig. 2. First, we



Fig. 2. Kernel-image-loop unrolling in TC.

load the top column of the weight matrix and set the top
column. Next, we load the top column of the image in the
kernel and then store left rows with transpose. In the next
row, we load pixels in a one-pixel slide widow and then store
it with transpose. The process is repeated until the matrix of
pixel values is filled with all elements. Then, matrix-multiply
is performed. After that, the convoluted result of top column
is stored in the top column. The flow is defined as follows for
i ∈ {0, 1, 2}:

dpi,0
=

∑
k∈{0,1,2}

W (pk,i, qk,0)I(qk,0i,k). (9)

The process is repeated until the kernel column end. The stride
of the unrolling is the radius for the image-loop direction.

Here, we consider the matrix layouts that can be computed
with WMMA API. There are three types of FP16/FP32 mixed
operations: 16×16×16, 32×8×16, and 8×32×16. For the
kernel-image-loop unrolling, only 16 elements of the first line
can be used when 16×16×16 case, while 32 elements of the
first line can be used in the 32×8×16 cases. The kernel-loop
unrolling can use up to 16 elements in the 16× 16× 16 case;
thus, the kernel-image-loop unrolling with the 32 × 8 × 16
tends to be more efficient.

This process can also represent bilateral filter weight. The
numerator is defined as follows:

dpi,0 =
∑

k∈{0,1,2}

(
ωs(pk,i, qk,0)

)
(10)(

ωr(I(pk,i), I(qk,0i,k))I(qk,0i,k)
)
.

The denominator is defined as follows:

dpi,0
=
∑

k∈{0,1,2}

(
ωs

(
pk,i, qk,0

))(
ωr(I(pk,i), I

(
qk,0i,k)

))
. (11)

C. Diagonal Kernel-image-loop Unrolling

We introduce the diagonal kernel-image-loop unrolling,
which is an extension of kernel loop unrolling. Here, we
consider the convolution of an LTI filter, which has the same
weight function for each pixel.

We now consider the unused elements in kernel-loop un-
rolling. We show the left/right next diagonal elements cases:

a b c d e f g h I j

a b c d e f g h I jb c d

b c dspace 
weight

pixel 
values

c d e

b c d

a b c

e f g

e f g

f g h

e f g

d e f

a b c d e

d e f g h

c d e

b c d

a b c

f g h

e f g

d e f

a b c d e f g h

Fig. 3. Diagonal kernel-image-loop unrolling using TC.

TABLE II
RELATIONSHIP OF 3× 3 MATRIX-MULTIPLY ELEMENTS BETWEEN INPUT

AND REGARDED OUTPUT.

dp0,0 dp0,1 dp0,2 dp1,0 dp1,1 dp1,2 dp2,0 dp2,1 dp2,2

dp0,0 dp+10,0 dp+20,0 dp−11,1 dp1,1 dp+11,1 dp−22,2 dp−12,2 dp2,2

j = i± 1, i ∈ {0, 1}.

dpi,i±1
=

∑
k∈{0,1,2}

W (pk,i, qk,i±1)I(qk,i±1). (12)

dp0,1
is the 3 × 1 convolution result of the top column of

the next pixel. dp1,2
is the second column of that. Also, dp1,0

is the 3 × 1 convolution result of the second column of the
previous pixel. dp2,0 is the last column of that. Note that we
do not have the last column of the convolution result of the
next pixel and the top column of that of the previous pixel.

Next, we consider the second left/right next diagonal ele-
ments: j = i± 2, i ∈ {0}.

dpi,i±2 =
∑

k∈{0,1,2}

W (pk,i, qk,i±2)I(qk,i±2). (13)

dp0,2
is the 3× 1 convolution result of the top column of the

next next pixel position, and dp2,0
is that of the last column

of the previous previous pixel.
Table II shows the relationship of all the elements. To

replenish the missing convolution result, we can unroll and
convolution with a kernel width stride. Figure 3 show the
computational flow. For obtaining the convolution result, we
unroll the image-loop at the convolution radius with processing
TC and sum the diagonal elements.

The process is limited for the LTI filter. Let consider the
convolution of the bilateral filter, which is an LTV filter. Since
the bilateral filter is time-invariant, the neighboring elements of
the matrix cannot be used to calculate the neighboring pixels.
Only the corresponding vectors of the matrices, the diagonal
components of the matrices in the case of pixel loop, and the
first row of the matrices in the case of kernel loop can be used.



0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23

ti
m
e(
u
s)

radius

FP32

FP16/FP32

TCU_KI

TCU_DKI

Fig. 4. Processing time of Gaussian filtering.

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23

ti
m
e
(u
s)

radius

FP32

FP16/FP32

TCU_KI_16x16x16

TCU_KI_32x8x16

Fig. 5. Processing time of bilateral filtering.

V. EXPERIMENTAL RESULTS

We verified the effectiveness of the proposed loop unrolling
for TCs. We used a Gaussian filter as an LTI filter and a bilat-
eral filter as an LTV filter to compare the different convolution
methods. Note that Gaussian filtering is a separable filter; thus,
we can reduce the computational order to O(r) using separable
convolution. However, we did not use separable convolution in
our experiment to verify the performance of general LTI filters.
The experimental image was a 128 × 128 grayscale image,
and the processing time is measured while the convolution
radius r is varied from 1 to 23. Note that we did not measure
the convolution radius beyond this value (r > 23) because
it is difficult to maintain the accuracy in FP16/FP32 mixed-
precision arithmetic. The computer used for the measurement
was Ryzen9 5900X CPU and GeForce RTX3090 GPU. The
accuracy of the data was calculated using a mixed-precision
calculation of FP16 input and FP32 accumulation.

For Gaussian filtering, we used the matrix layout of 16 ×
16 × 16 with diagonal kernel-image-loop unrolling. Since
the LTI filter can compute neighboring pixels simultaneously,
the kernel size was used as the stride width in the column
direction, and the row direction was computed for all rows. In
addition, we use kernel-image-loop unrolling as a competitive.

The bilateral filtering is compared using a kernel-image-
loop unrolling that uses only the first row of the matrix in two
layouts, 16 × 16 × 16 and 32 × 8 × 16. Since the LTV filter
cannot compute adjacent pixels, it is computed for all pixels.
In both cases, when r > 7, the matrix was split between the
loop, and multiple operations were performed using TC.

The execution time of the Gaussian filter with varying kernel
size is shown in Fig. 4. The time of diagonal kernel-image

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23

ti
m
e(
u
s)

radius

FP32(Titan)
FP16/FP32(Titan)
TCU_KI(Titan)
TCU_DKI(Titan)
FP32(3090)
FP16/FP32(3090)
TCU_KI(3090)
TCU_DKI(3090)

Fig. 6. Processing time of Gaussian filtering on various GPU.
TABLE III

GPU SPEC. FOR FP16, FP32, AND TC, UNIT IS TFLOPS. #CC AND #TC
ARE THE NUMBER OF CUDA CORES AND TENSOR CORES.

Model Arch. Clock #CC #TC FP16 FP32 TC
RTX 3090 Ampere 1.70 10496 328 35.7 35.7 142.7
Titan RTX Turing 1.77 4608 576 32.6 16.3 130.5

(DKI) loop unrolling using TC is shorter than using CUDA
Core 16/32-bit cases from r ≥ 7. In particular, there is a
large difference for r = 7, 15. The kernel-image (KI) loop
unrolling using TC is not efficient since the utilization of TC
is not complete.

The bilateral filter cases is shown in Fig. 5. Implementing
the matrix size of 32× 8× 16 was faster than the implemen-
tation using the matrix size of 16 × 16 × 16; however, the
usual implementation with CUDA core is faster than the TC
implementation.

Figure 6 shows the difference between the GeForce
RTX3090 (Ampare GA102) and GeForce TITN RTX (Turing).
Table III shows the spec of each GPU and the Peak TFLOPS
is computed as follows (CC is CUDA Core):
• TuringCC: 4608cores × 1.77GHz× 2FMA= 16.312
• AmpereCC: 10496cores × 1.70GHz× 2FMA= 35.686
• TuringTC: 576cores × 1.77GHz× 2FMA×641= 130.499
• AmpereTC: 328cores×1.70GHz× 2FMA×1282= 142.746

For each case, DKI loop unrolling is the fastest. The difference
between TC implementation and CC implementation becomes
smaller than the previous generation of GPU due to the ratios
of peak FLOPS (TC/CC) are 8 (Turing) and 4 (Ampere).

VI. CONCLUSION

In this paper, we proposed three loop unrolling method for
TCs and verified these effectiveness for image filtering of LTI
and LTV filters: Gaussian filtering and bilateral filtering as
examples. Time-invariant Gaussian filter has high using rate
of the TC with diagonal kernel-image-loop unrolling. The TC
calculation results was faster than the CUDA Core calculation
for the part with a large kernel radius. In addition, it is shown
that the execution time can be shortened by changing the
matrix size of TC in the bilateral filter because the matrix can
be used efficiently; however, usual CUDA Core parallelization
is more efficient than using TC. As our future work, we will
develop a DSL for recursive filtering, such as [42], with TC.

11st/2nd generation TC computes 64 16-bit-elements with FMA per a clock.
23rd generation TC for RTX3090 computes 128 16-bit-elements with FMA

per a clock.



REFERENCES

[1] D. Ziou and S. Tabbone. Edge detection techniques-an overview. attern
Recognition and Image Analysis: Advances in Mathematical Theory and
Applications, 8(4):537–559, 1998.

[2] A. P. Witkin. Scale-space filtering. In Readings in Computer Vision,
pages 329–332. Elsevier, 1987.

[3] V. Aurich and J. Weule. Non-linear gaussian filters performing edge
preserving diffusion. In Mustererkennung, pages 538–545. Springer,
1995.

[4] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.
In IEEE International Conference on Computer Vision (ICCV), pages
839–846, 1998.

[5] A. Buades, B. Coll, and J. M. Morel. A non-local algorithm for image
denoising. In Proc. IEEE Computer Vision and Pattern Recognition
(CVPR), pages 60–65, 2005.

[6] J.-S. Lee. Digital image enhancement and noise filtering by use of
local statistics. IEEE transactions on pattern analysis and machine
intelligence, (2):165–168, 1980.

[7] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and
K. Myszkowski. High dynamic range imaging: acquisition, display,
and image-based lighting. Morgan Kaufmann, 2010.

[8] R. Fattal. Single image dehazing. ACM transactions on graphics (TOG),
27(3):1–9, 2008.

[9] N. Fukushima, K. Sugimoto, and S. Kamata. Guided image filtering
with arbitrary window function. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2018.

[10] S. Paris, S. W. Hasinoff, and J. Kautz. Local laplacian filters: Edge-
aware image processing with a laplacian pyramid. ACM transactions on
graphics (TOG), 30(4):68, 2011.

[11] T. Matsuo, N. Fukushima, and Y. Ishibashi. Weighted joint bilateral filter
with slope depth compensation filter for depth map refinement. In Proc.
International Conference on Computer Vision Theory and Applications
(VISAPP), 2013.

[12] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612, 2004.

[13] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview
of the h. 264/avc video coding standard. IEEE Transactions on circuits
and systems for video technology, 13(7):560–576, 2003.

[14] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand. Overview of
the high efficiency video coding (hevc) standard. IEEE Transactions on
circuits and systems for video technology, 22(12):1649–1668, 2012.

[15] B. Bross, J. Chen, J.-R. Ohm, G. J. Sullivan, and Y.-K. Wang. De-
velopments in international video coding standardization after avc, with
an overview of versatile video coding (vvc). Proceedings of the IEEE,
2021.

[16] R. Deriche. Recursively implementating the gaussian and its derivatives.
In Proc. IEEE International Conference on Image Processing (ICIP),
pages 263–267, 1992.

[17] L. J. vanVliet, I. T. Young, and P. W. Verbeek. Recursive gaussian
derivative filters. In Proceegings of International Conference on Pattern
Recognition (ICPR), 1998.

[18] K. Sugimoto and S. Kamata. Fast gaussian filter with second-order shift
property of dct-5. In Proceedings of IEEE International Conference on
Image Processing (ICIP), 2013.

[19] T. Otsuka, N. Fukushima, Y. Maeda, K. Sugimoto, and S. Kamata. Opti-
mization of sliding-dct based gaussian filtering for hardware accelerator.
In Proc. International Conference on Visual Communications and Image
Processing (VCIP), 2020.

[20] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-
dynamic-range images. ACM Transactions on Graphics, 21(3):257–266,
2002.

[21] K. N. Chaudhury, D. Sage, and M. Unser. Fast o(1) bilateral filtering
using trigonometric range kernels. IEEE Transactions on Image Pro-
cessing, 20(12):3376–3382, 2011.

[22] K. Sugimoto and S. Kamata. Compressive bilateral filtering. IEEE
Transactions on Image Processing, 24(11):3357–3369, 2015.

[23] Y. Maeda, N. Fukushima, and H. Matsuo. Effective implementation of
edge-preserving filtering on cpu microarchitectures. Applied Sciences,
8(10), 2018.

[24] K. Sugimoto, N. Fukushima, and S. Kamata. 200 fps constant-time
bilateral filter using svd and tiling strategy. In IEEE International
Conference on Image Processing (ICIP), 2019.

[25] Y. Sumiya, N. Fukushima, K. Sugimoto, and S. i. Kamata. Extending
compressive bilateral filtering for arbitrary range kernel. In Proc. IEEE
International Conference on Image Processing (ICIP), 2020.

[26] S. Oishi and N. Fukushima. Clustering-based acceleration for high-
dimensional gaussian filtering. In Proc. Signal Processing and Multi-
media Applications (SIGMAP), 2021.

[27] H. Tajima, N. Fukushima, Y. Maeda, and T. Tsubokawa. Local lut
upsampling for acceleration of edge-preserving filtering. In Proc.
International Conference on Computer Vision Theory and Applications
(VISAPP), 2019.

[28] H. Tajima, T. Tsubokawa, Y. Maeda, and N. Fukushima. Fast local
lut upsampling. In Proc. International Conference on Computer Vision
Theory and Applications (VISAPP), 2020.

[29] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter.
Nvidia tensor core programmability, performance & precision. In IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 522–531. IEEE, 2018.

[30] A. Sorna, X. Cheng, E. D’azevedo, K. Won, and S. Tomov. Optimizing
the fast fourier transform using mixed precision on tensor core hardware.
In IEEE International Conference on High Performance Computing
Workshops (HiPCW), pages 3–7. IEEE, 2018.

[31] R. Chowdhury, F. Silvestri, and F. Vella. A computational model for
tensor core units. In Proc. ACM Symposium on Parallelism in Algorithms
and Architectures, page 519–521. Association for Computing Machinery,
2020.

[32] A. Dakkak, C. Li, J. Xiong, I. Gelado, and W.-m. Hwu. Accelerating
reduction and scan using tensor core units. In Proceedings of the ACM
International Conference on Supercomputing, pages 46–57, 2019.

[33] N. Jouppi, C. Young, N. Patil, and D. Patterson. Motivation for and
evaluation of the first tensor processing unit. IEEE Micro, 38(3):10–19,
2018.

[34] M. H. Ionica and D. Gregg. The movidius myriad architecture’s potential
for scientific computing. IEEE Micro, 35(1):6–14, 2015.

[35] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand. Decoupling algorithms from schedules for easy optimiza-
tion of image processing pipelines. ACM Transactions on Graphics,
31(4):32:1–32:12, 2012-07.

[36] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe. Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In Proc. ACM
Programming Language Design and Implementation (PLDI), pages 519–
530, 2013.

[37] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fa-
tahalian. Automatically scheduling halide image processing pipelines.
ACM Transactions on Graphics, 35(4):83:1–83:11, 2016.

[38] S. Sioutas, S. Stuijk, T. Basten, L. Somers, and H. Corporaal. Program-
ming tensor cores from an image processing dsl. In Proc. nternational
Workshop on Software and Compilers for Embedded Systems, page
36–41. Association for Computing Machinery, 2020.

[39] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky.
Nvidia a100 tensor core gpu: Performance and innovation. IEEE Micro,
41(2):29–35, 2021.

[40] M. Flynn. Very high-speed computing systems. Proceedings of the
IEEE, 54(12):1901–1909, 1966.

[41] Y. Maeda, N. Fukushima, and H. Matsuo. Taxonomy of vectorization
patterns of programming for fir image filters using kernel subsampling
and new one. Applied Sciences, 8(8), 2018.

[42] H. Takagi and N. Fukushima. An efficient description with halide for iir
gaussian filter. In Proc. Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA), 2020.


