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Abstract—Gaussian filtering is a smoothing filter used in
various tasks. The main disadvantage is the dependence of the
processing time on its kernel radius. One solution is using a
sliding-discreet cosine transform (DCT), a constant-time algo-
rithm for the kernel radius, and it provides the best performance
in terms of both speed and accuracy. However, the speed and
accuracy differ according to the type of DCT used. We can also
accelerate the sliding-DCT based Gaussian filter by hardware
accelerators, but the acceleration requires modification of the
algorithms. In this paper, we focus on the fused multiply-
add (FMA) instruction of hardware accelerators in modern
computer architectures. The FMA instruction simultaneously
performs multiplication and addition, i.e.,ax+b. We proposed an
acceleration method of the sliding-DCT based Gaussian filtering
for the FMA instruction. Moreover, we evaluate the performance
of it in terms of computational time and approximation accuracy.

Index Terms—Gaussian filter, sliding DCT, FMA, constant-
time Gaussian filter

I. INTRODUCTION

Gaussian filtering (GF) is essential in various image pro-
cessing applications. For example, pre-filtering for downsam-
pling; feature description, e.g., SIFT [1]; saliency map [2]; in-
ternal processing of edge-preserving filters, such as accelerated
bilateral filtering [3]–[6] and guided image filtering [7]; high-
dimensional Gaussian filtering [8], image quality evaluation
indices, such as SSIM [9], [10]; blur removal processing [11].
Hence, accelerating GF is significant in various tasks.

The computational order of GF’s straightforward implemen-
tation is O(R2) per pixel, where R ∈ N is its kernel radius.
The order is the same as the general 2D finite impulse re-
sponse (FIR) filters. Separable filtering and frequency-domain
filtering can accelerate it. The separable filtering reduces the
order into O(R). The frequency-domain filtering also reduces
the order into O(logN) per pixel, where N ∈ N is the number
of image pixels.

We can further accelerate GF by using approximation.
Infinite impulse response (IIR) filtering for GF is faster than
the classical techniques. Typical IIR GFs are addition [12] and
multiplication forms [13]. Each order is O(K), where K ∈ N
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TABLE I: Number of operations of naı̈ve implemented GF.
Algorithm Add/Sub Mul # of scans
IIR (add) 8K − 2 8K 4
IIR (mul) 4K 4K + 4 4

Sliding-DCT-1 4K + 5 3K + 3 2
Sliding-DCT-3 3K + 3 3K + 3 2
Sliding-DCT-5 3K + 5 3K + 3 2
Sliding-DCT-7 3K + 5 3K + 3 2

is the approximation order and K < R, usually. Also, they
have a constant-time property for the kernel radius.

As an FIR approximation for GF, the integral image is the
representative, e.g., stacked integral image and cosine integral
image [14], [15]. These have a recursive form for specific
FIR filters. The order is also O(K). Sliding-DCT-based GF is
the state-of-the-arts in the integral-image-based methods [16]–
[20]. This method approximates a Gaussian kernel by sum-
mation of products of cosine kernels and accelerates it by
the sliding transform [21], [22]. The sliding transform can be
realized by various DCT definitions, i.e., DCT-1 to DCT-8.
These speed and accuracy depend on the type of DCT.

The IIR and FIR approximations have a constant-time
property; however, these computational times are not the same
because the number of operations and filter-passes are different
(Tab. I). Recursive FIR based methods are usually faster
because the number of filter-passes is smaller, improving cache
efficiency.

In this paper, we aim to accelerate sliding-DCT based GF by
using a hardware accelerator. We focus on the fused multiply-
add (FMA) instruction, which is a hardware accelerator in
modern computer architectures. FMA performs multiplication
(MUL) and addition (ADD) simultaneously, i.e., ax+b. Thus,
the number of instructions, the computational time, can be
half, theoretically. However, applying FMA to the sliding-
DCT based GF requires a modification of the algorithms. The
contributions of this study are as follows:
• We optimize the computation of each DCT for FMA to

reduce the number of operations;
• Fair comparison is performed by combining specific

optimization techniques for each DCT, such as for DCT-
3 [16] and DCT-5 [18].

• This study discovers that DCT-5 is the fastest. The
previous work [19] states that DCT-3 was the fastest;

• This study also discovers that DCT-1 and -5 are preferable
than DCT-3 and -7 in the higher approximation order case
in 32-bit precision. Direct current (DC) components of978-1-7281-8068-7/20/$31.00 ©2020 IEEE



DCT-1 and -5 stabilize the numerical computation.
DCT is essential; thus, it is optimized for various application
such as coding [23] and denoising [24].

II. SLIDING-DCT BASED GAUSSIAN FILTERING

A. DCT-Based Definition

Let gn be a one-dimensional Gaussian kernel, , where the
window length is 2R + 1. A multi-dimensional GF can be
decomposed into multiple one-dimensional GFs due to its
separable property. The definition is expressed as:

gn = η−1 exp(− n2

2σ2
), η =

R∑
n=−R

exp(− n2

2σ2
), (1)

where σ2 ∈ R is the variance of the Gaussian distribution.
The computational order is O(R).

The FIR convolution is defined as:

(f ∗ g)x =

R∑
n=−R

fx+ngn, (2)

where fx (fx ∈ R, x ∈ N) is input signals, and gn (n =
−R, ..., R) is Gaussian weights.

Using DCT, gn can be re-defined by:

gn =

R∑
k=0

GkC
(k)
n , C(k)

n = cos(φ(k + k0)(n+ n0)), (3)

where Gk (k=0, 1, . . . , R) is the DCT transformed coefficient
from gn, and φ = 2π

T . Eq. (3) is the inverse DCT expression
of the kernel. The parameters T , k0, and n0 depend on the
type of DCT that are summarized in Tab. II. Note that DCT-1
and -5 have DC components because k0 = 0. Based on (1),
Gk can be approximated as:

Gk '
ck
T
e−

1
2σ

2φ2(k+k0)
2

, ck =

{
1 (k = 0)

2 (otherwise)
(4)

Substituting (3) into (2) yields:

(f ∗ g)x =

R∑
n=−R

R∑
k=0

fx+nGkC
(k)
n =

R∑
k=0

GkF
(x)
k , (5)

where F (x)
k =

∑R
n=−R fx+nC

(k)
n is a DCT coefficient of the

partial signals extracted from the window at the coordinate x
of input pixel value. Because (1) and (4) are even functions,
only DCT-1, -3, -5, and -7 are symmetric at n = 0, i.e., n0 = 0.
Gk is exponential function, which is monotonous decreasing

property, (5) can be truncated, such as K less than R:

(f ∗ g)x =

R∑
k=0

GkF
(x)
k '

K∑
k=0

GkF
(x)
k . (6)

The computational order of F (x)
k is O(R) and total computa-

tional order of (6) is O(KR), which is larger than the naı̈ve
1D GF. Thus, we utilize the sliding transform to calculate F (x)

k

in O(1) order that reduce O(KR) to O(K).

TABLE II: Parameters of all DCTs

DCT-type T k0 n0

DCT-1 2R 0 0
DCT-3 2R+ 2 1

2
0

DCT-5 2R+ 1 0 0
DCT-7 2R+ 1 1

2
0

TABLE III: Values of ∆
(k)
x in Eq. (7)

DCT-Type ∆
(k)
x

DCT-1 (−1)k{fx−R−1 + fx+R+1 − C
(k)
1 (fx−R + fx+R)}

DCT-3 C
(k)
R (fx−R−1 + fx+R+1)

DCT-5 C
(k)
R (fx−R−1 + fx+R+1 − fx−R − fx+R)

DCT-7 C
(k)
R (fx−R−1 + fx+R+1 + fx−R + fx+R)

B. Sliding-Transform of DCT
The second-order shift property is a relational expression

involving three short-time transform coefficients:

F
(x−1)
k + F

(x+1)
k = 2C

(k)
1−n0

F
(x)
k + ∆(k)

x , (7)

∆(k)
x =C

(k)
−Rfx−R−1+C

(k)
R fx+R+1−C(k)

−R−1fx−R−C
(k)
R+1fx+R.

F
(x)
k can be calculated in O(1) by recursive computing of (7).
Focusing on the cosine phase in ∆

(k)
x , the number of multi-

plications, C(k)
n , can be reduced because of the periodicity of

cosine. Table III shows the optimized ∆
(k)
x of all the DCTs.

We can further reduce operations in (6) by separating k = 0
and 1 ≤ k ≤ K:

(f ∗ g)x = G0{F (x)
0 +

K∑
k=1

Z
(x)
k }, Z

(x)
k = γkF

(x)
k (8)

where γk = Gk

G0
= cke

− 1
2σ

2φ2(k+k0)
2

. Based on (7), Z(x)
k is

also represented as:

Z
(x−1)
k + Z

(x+1)
k = 2C

(k)
1−n0

Z
(x)
k + γk∆(k)

x . (9)

Eq. (8) requires less multiplications than (6). The reduction
is shown in [18] for the DCT-5 case. This study extends
this approach to the other DCTs. Also, we further reduce the
number of operations by using FMA.

III. REDUCING THE NUMBER OF OPERATIONS

We demonstrate how to reduce the number of opera-
tions for each DCT. The FMA instructions can compute
FMA(a, x,b) = ±ax ± b in one cycle. In recent comput-
ers, each latency and throughput of ADD, SUB, MUL, and
FMA instructions are equal, e.g., the latency is 4 cycles per
instruction and throughput is a 0.5 cycle per instruction Intel
Skylake architecture. Therefore, we can accelerate processing
by merging ADD, SUB, and MUL operations by FMA.

The sliding-DCT computation is divided into three parts: 1)
∆-computing; 2) operations at k = 0, named 0-th operation;
and 3) operation at k ≥ 1, named k-th operation. We will
introduce the results for each process in Tabs. IV and V.

We first describe the reduced number of operations at the
common parts of DCTs by FMA. The 0-th operation in (8)
requires 1 MUL for G0. The k-th operation in (8) requires K



TABLE IV: The number of non-optimized operations for each DCT in terms of k-th, 0-th and ∆.

k-th 0-th ∆ Total
MUL ADD/SUB MUL ADD/SUB MUL ADD/SUB

DCT-1 2K 3K 3 2 K + 1 K + 3 7K + 9
DCT-3 2K 3K 3 2 0 1 5K + 6
DCT-5 2K 3K 3 2 0 3 5K + 8
DCT-7 2K 3K 3 2 0 3 5K + 8

TABLE V: The number of optimized operations for each DCT in terms of k-th, 0-th and ∆.

k-th 0-th ∆ Total
MUL ADD/SUB FMA MUL ADD/SUB FMA MUL ADD/SUB FMA

DCT-1 0 K 2K 1 2 0 0 2 K 4K + 5
DCT-3 0 K 2K 1 0 2 0 1 0 3K + 4
DCT-5 0 K 2K 1 2 0 0 1 0 3K + 4
DCT-7 0 K 2K 1 0 2 0 2 0 3K + 5

TABLE VI: Buffer sizes and number of pixel references.

DCT-types Buffer size # of pixel
referencesZ

(x+1)
k γk/γ′k Ck

n ∆′x Total
DCT-1 2K + 1 K 2K 0 5K + 1 4
DCT-3 2(K + 1) K + 1 K + 1 0 4K + 4 2
DCT-5 2K + 1 K K 1 4K + 2 2
DCT-7 2(K + 1) K + 1 K + 1 1 4K + 5 2

ADDs. The operations in (9) can be computed by 2K FMAs
instead of two ADDs/MULs1 (See Tab. V.). ∆-computing
needs one MUL for each C(k). Thus, in total, K MULs and
three, one, three, and three times ADDs/SUBs are needed
for DCT-1, -3, -5, and -7, respectively. Furthermore, we can
specialize in each DCT to reduce the number of operations.

A. DCT-1
DCT-1 has a DC component at k = 0; thus, the 0-th

operation can be reduced. Z(x)
0 (F

(x)
0 ) can be calculated as:

F
(x+1)
0 = F

(x)
0 + fx+R+1 − fx−R. (10)

The calculation has two ADDs/SUBs. For k ≥ 1, (9) is used to
compute Z(x)

k . For ∆-calculation, the terms fx−R−1+fx+R+1

and fx−R+fx+R are calculated once; thus, using two ADDs.
In calculating ∆

(k)
x , we can save the number of operations K

times because the calculation can be reduced by FMA 2. The
bit sign, (−1)k (see Tab. III), can be removed by alternating
ADDs/SUBs of ∆. In total, DCT-1 is reduced from 7K + 9
to 4K + 5 operations.

B. DCT-3
DCT-3 has no DC component; thus, we compute (9) at

k = 0 by two FMAs. For ∆
(k)
x -calculation, we can remove

MULs of C(k) by the pre-multiplication γk and C
(k)
R . The

new value γ′k = γkC
(k)
R is constant for each k; thus, the

value can be pre-computed. Furthermore, we define the new
∆′x = ∆(k)/C

(k)
R , which is also constant for each k; therefore,

the ∆-computation is likewise constant for every k. Note that
one ADD is required when computing ∆′x. Totally, DCT-3 is
reduced from 5K + 6 to 3K + 4 operations.

1Z
(x+1)
k = FMA(2C

(k)
1−n0

,Z
(x)
k ,FMA(γk,∆

(k)
x ,−Z

(x−1)
k )).

2∆
(k)
x = FMA(−C

(k)
1 , fx−R + fx+R, fx−R−1 + fx+R+1)

C. DCT-5
DCT-5 also has a DC component. Z(x)

0 (orF
(x)
0 ) is calcu-

lated by (10), and subsequently two ADDs/SUBs are required.
For ∆-calculation, we can reduce the k MULs by the technique
shown in DCT-3; thus, we can reduce K ADDs/SUBs. The
term fx+R+1−fx−R in the ∆-calculation are the same as the
ones in (10). Thus, we can reduce the operations by storing
and reusing this value. Furthermore, the terms fx+R+1−fx−R
at x are the same as the terms −fx+R + fx−R−1 at x+ 1, in
terms of their absolute values. Thus, we can omit the operation.
Finally, only one SUB is required for ∆-calculation. In total,
DCT-5 is reduced from 5K + 8 to 3K + 4 operations.

D. DCT-7
The 0-th operation in (9) can compute two FMAs in the

same manner as DCT-3. For ∆-calculation, one ADD can be
reduced. Furthermore, the terms fx+R+1 + fx−R at x are the
same as the terms fx+R + fx−R−1 at x+ 1. Thus, two ADDs
are required for the terms f in ∆′x. Totally, DCT-7 is reduced
from 5K + 8 to 3K + 5 operations.

IV. BUFFER SIZE AND NUMBER OF PIXEL REFERENCES

The load/store operations are also essential. In particular,
our GF has minimal computational complexities; thus, the time
for loading and storing pixels tends to be dominant.

We consider the size of buffers and the number of pixel
references for the next pixel of Z(x+1)

k to minimize the number
of load/store operations as small as possible.

Table VI shows the buffer sizes and the number of pixel
references. For Z(x+1)

k , DCT-1 and -5 require 2K buffers for
Z

(x)
k and Z(x−1)

k (k ≥ 1) and one buffer for Z(x)
0 . In contrast,

DCT-3 and -7 require 2(K + 1) buffers (k ≥ 0). For γk or
γ′k, DCT-1 and -5 require K buffers (k ≥ 1) and DCT-3 and
-7 require K + 1 buffers (k ≥ 0). For C(k)

n , DCT-1 requires
2K buffers (2C(k)

1−n0
in Eq. (9) and C

(k)
1 in ∆

(k)
x ); DCT-5

requires K buffers and DCT-3 and -7 require K+1 buffers. For
∆′x calculation, DCT-5 and -7 require one buffers by reusing
±fx+R+1±fx−R. Totally, DCT-1, -3, -5, and -7 require 5K+
1, 4K + 4, 4K + 2, and 4K + 5 buffers, respectively.

DCT-1 requires four pixels and DCT-3 requires two pixels
in terms of the number of pixel references. There are four
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Fig. 1: Computational time vs. σ of the sliding-DCT based
GF with/without FMA instruction.
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Fig. 2: The stability of each DCT in 32 or 64-bit precision.

pixels in ∆′x for DCT-5 and -7; however, ±fx+R+1 ± fx−R
can be reused. Thus, they require only two pixel-references.

V. PERFORMANCE EVALUATION

We demonstrate the effectiveness of the proposed method.
Moreover, we show the accuracy for 32-bit and 64-bit pre-
cision to evaluate their performances of constant-time GFs.
For the accuracy evaluation, we use the peak signal-to-noise
ratio (PSNR) as a metric and the 64-bit precision output image
of cv::GaussianBlur in OpenCV as the answer image. Note
that we used r = 8.0σ for generating the answer. The test
image was Lenna (512×512) with grayscale values. The tested
CPU was Intel Core i9–9900K 3.60GHz 8 cores/16 threads.
The code was written in C++ and vectorized by AVX/AVX2.
Note that the code is not parallelized.

Figure 1 shows the computational time vs. σ for each GF.
In Fig. 1, the proposed method, which is accelerated by FMA,
is around 30% faster than the conventional methods.

Figure 2 shows 32-bit and 64-bit precision results at K = 5
and K = 17. DCT-1 and -5 are stable, and that DCT-3 and
-7 are unstable. The reason for this is that DCT-1 and -5 have
DC components, unlike the other DCTs.

VI. CONCLUSION

In this study, we proposed a method to reduce the op-
erational complexity of the sliding-DCT based GF using
FMA instructions. Moreover, we evaluated the stability of the
sliding-DCT based GF. The experimental results show that
the proposed method is around 30% faster than conventional
methods. In comparing computational time and accuracy for
each DCT, DCT-3 and -5 are faster than the other DCTs;
however, DCT-3 requires larger buffer sizes compared with
DCT-5. Moreover, in terms of the stability of accuracy, DCT-
1 and -5 are the optimal methods. Overall, DCT-5 is the most
optimal method among the DCTs.
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