Halide and OpenMP for generating
High-performance recursive filters

Yuta Tsuji and Norishige Fukushima
Nagoya Institute of Technology, Nagoya, Japan

ABSTRACT

Halide is a domain-specific language for image processing. Halide can separate a programming code into an algorithm
part and a scheduling part. We can write how to work image processing in the algorithm part, and how to compute it in
the scheduling part. The scheduling part has a restriction, which does not change the calculation result. The restriction
prevents efficient code generation for some kinds of image processing. In this paper, we propose high-performance
recursive filters with Halide and OpenMP. The recursive filter is one of the difficult algorithms for optimizing code with
Halide. In our implementation, we divided an input image into multiple tiles, and then each tile is processed with Halide
code. Also, each processing for a tile in Halide is parallelized by OpenMP. The processing has an approximated
computation in boundary conditions for forcefully cutting the effect from the next tiles; thus, the resulting image has
slightly degraded. The closed tile, however, improves the cache efficiency in computation. In the experiment, the
processing time of the box image filtering with and without tiling was compared. The box image filtering is the most
simple recursive filter. The box image filtering uses an integral image technique to process in constant time, and its
calculation includes recursive filters. Code with tiling, which was the proposed method, the tile size is 128x128. The
experimental results showed that the proposed method had a better computational time performance than the code
without tiling.

Keywords: Halide, OpenMP, recursive filter, approximated computing

1. INTRODUCTION

Halide'* is a domain-specific language for image processing. In Halide, we can separate code into an algorithm part and
a scheduling part, i.e., we can write how to work image processing in the algorithm part, and how to compute it in the
scheduling part. The modulation makes the optimizer in the Halide compiler easier than the usual programming language.
The programmer can provide optimized codes for various devices by changing only scheduling parts.

The scheduling part in Halide has a restriction. The scheduling part does not change the calculation result by changing
scheduling for optimizing code. The restriction is usual but strict for some image processing codes. For example, in the
recursive filtering case, the restriction prevents efficient code generation with tiling scheduling. Recursive filters include
various types of filters, such as box filtering*®, Gaussian filtering®3, constant-time bilateral filtering'8, guided image
filtering®®-22, domain transform filtering?, and recursive bilateral filtering?*.

The work? presents an efficient code for guided image filtering for CPU, and also extend Halide to support FPGA. The
code is optimized in the restriction of the Halide compiler. The extension for specific recursive filtering in Halide is also
proposed?®. This extension automatically generates an extremely complex algorithm part for efficient recursive filtering.
However, we cannot write the scheduling of approximated computing for more efficient code generation in both cases.

In this paper, we propose a writing rule of Halide for high-performance recursive filtering with approximated computing.
For the approximated computing in Halide, we additionally use OpenMP to break the rule of Halide. OpenMP is a
compiler directive for parallel computing. With our approach, the image is forcefully tiled for efficient cache-hit without
scheduling restrictions by approximating computation in boundary conditions. The proposed method can perform tiling
scheduling that is not possible with a general description in Halide.

2. RECURSIVE FILTER

In this paper, we treat box filtering as a typical recursive filter. Algorithm 1 shows box image filtering written in Halide.
Let input(x, y, ¢) and output(X, y, ¢) are input and output images, where X, y, and c are variables representing image rows,

columns, and color channels, respectively. r is the kernel radius of filtering, R is RDom class with values of -r to width+r
in the x-direction and -r to height+r in the y-direction, i.e., RDom class represents loop variables. The algorithm uses
integral images*® to compute box filtering in constant time. The naive filtering of box filtering is just finite impulse
response (FIR) filtering, but the integral image based filtering becomes recursive filtering. The relevant parts are pipeline
stage 3 and 4 in Algorithm 1. The filter requires the computed result of previous pixels; thus, this filter is recursive
filtering.

In this algorithm, we cannot use image tiling scheduling efficient. In tiling scheduling, we bound image as blocks and
then perform processing. However, in the case of recursive filtering, we need to compute the entire image for the tiling
part in the worst case. Algorithm 2 shows the case. The scheduling requires results from other tiling parts for one-tile
computation; thus, the computation requires massive redundant computation.

Algorithm 1 BoxFilter
I s=2+«r+1)=(2*xr+ 1)
2: inte(x,y, ¢) = input(z, y, ¢)
3: inte(R.z, R.y, ¢) = inte(R.x, R.y, ¢) + inte(R.x — 1, R.y, ¢)
4
5

¢ inte(R.xz, R.y, c¢) = inte(R.z, R.y, ¢) + inte(R.z, R.y — 1,¢)
: output(x,y,c) = (inte(z +r,y + r,¢) —inte(z —r — 1,y +7r,¢)
—inte(z +7r,y —r—1,¢) +inte(z —r — 1,y —r —1,¢) * s)

Algorithm 2 Pseudo code of computation in the case of apply tiling scheduling to Algorithm1

: output.tile(x, y, xo, yo, i, yi, tile_z, tile_y);
: inte.compute_at(output, ro);
cs=2xr+1)x(2xr+1)
: for ¢ = 0 to chanels do
for yo = 0 to height/tile_.y do
for xo = 0 to width/tile_x do
for y = 0 to height do
for x = 0 to width do
inte(x, y, ¢) = input(z, y, c)
end for
end for
for R.y = —r to height + r do
for R.x = —r to width + r do
inte(R.x, R.y, c) = inte(R.xz, R.y, c) + inte(R.x — 1, R.y, ¢)
end for
end for)
for R.y = —r to height +r do
for R.z = —r to width + r do
inte(R.x, R.y, ¢) = inte(R.z, R.y, ¢) + inte(R.z, R.y — 1,¢)

B = et e e et et

end for
21: end for
22: for yi = 0 to tile_y do
23: for zi = 0 to tilex do
24: x = xo * tile_x + xi;
25: y = yo * tile_y + yi;
26: output(z,y.c) = (inte(z + r,y + r,¢) —inte(z —r — 1,y + r,¢)
—inte(x +r,y—r—1,¢) +inte(z —r — 1,y —r — 1,¢) * 5)
27: end for
28: end for
29: end for
30: end for
31: end for

3. PROPOSED METHOD

Figure 1 shows an example of a general Halide code execution. Usually, the Halide compiler performs JIT compilation
and function execution by calling the realize-function. Let src and dest are input and output images, r is the kernel radius,
and output is a Halide Function. This description must be in Halide rule, i.e., computing scheduling cannot change the
computing result by changing the computational order. This description cannot generate efficient tiling scheduling for
recursive filtering.

Figure 2 shows the proposed tiling method. Let subsrc and subdest are tiled input and output images. In our
implementation, we divided an input image into multiple tiles at first, and then each tile is processed with Halide code. In

this example, we divide an image into 16 tiles. At first, the code forcefully bounds image as tiles, the outer part of the tile
image is cutoff. Therefore, the scheduling can reduce redundant computation in this tiling scheduling. Also, each
processing written in Halide is parallelized by OpenMP. This tiling method cut off redundant computation of recursive
filtering. The writing method of separating tiles before writing Halide code overcome the rule of Halide restriction.

The processing, however, has an approximated computation in boundary conditions; thus, the resulting image has
slightly degraded. To control the degradation, we add the tile expansion process. Figure 3 shows the outline of the tile
expansion in the one-dimensional case. When the amount of expansion is 0, the accessed pixel, which is outside of the
tile, uses a copy of the pixel at the edge of the tile itself. When the amount of expansion is full size, the outside pixels is
copied from input image at generating the tile. We can control the amount of the copy. If the size of the tile expansion is
small, we can obtain high cache efficiency. If we have the larger tile expansion, cache efficiency becomes low but have
fewer approximated computation. Also, by extending the tile to the same radius as the kernel radius, we can obtain the
same calculation results as when we do not perform tiling strategy, except the rounding error of the floating-point
number due to the loop or computing order changing.

output = BoxFilter (src, r);
output.realize(dest);//Execution

Figure 1. General execution description in Halide.

for (int i = 0; 1 < 16; i++)

output [i] = BoxFilter(src[i], 1);
#pragma omp parallel for
for (int i = 0; 1 < 16; i++)

output [i] .realize(dest[i]);//Execution

Figure 2. Proposed method for tiling description in Halide with OpenMP.

+ Non-tiling case : Pixel copied for

. : boundary
Input image alb]c|alelr ‘ 9 ‘ h ‘ i | i ool

« extension ala|la|b|c|d]|e]|T-r ‘ g | hoi | j ‘

+ Tiling case
« Input image alb|c|d]e r‘g‘w||1
« Tile extension:0 alal|la|b]|c dld‘d| e | e| e f‘glh\h]h‘
» Tileextension:1 | a|a|a|b|c|d]|e]|e ‘d‘d e f‘g|h [‘
» Tileextension:2 | a|a|a|b|c|d|e]rt | c | dfe|f [9 holi } i ‘

Left boundary case Middle part case

Figure 3. Tile expansion for one-dimensional signals. Assuming radius is 2. In the non-tiling case, the left boundary is
expanded from the most left pixel by 2 pixels. For the tiling case, we divide the input image into tile size, and then copy the
values. Next, we copy input image for boundary as adequate extension size. Note that, in the case of left boundary, the
processing is the same case of the non-tiling case. Note that the expansion is copying, i.e., replicating. We can also utilize
wrapping and reflecting on the boundary condition.

4. EXPERIMENTAL RESULTS

In the experiments, we compared the proposed method with the non-tiling scheduling code for box filtering. The input
image was a 512512 color image. The parameter of the filter is r = 10. CPU was Intel Core i9-9900K 3.60 GHz

compiled with Visual Studio 2017. For comparing the approximation accuracy in tile expansion, we regarded the result
of the non-tiling scheduling code as the ground truth and measured it by peak signal-to-noise ratio (PSNR) between the
output of the proposed scheduling and the ground truth. The schedule of the non-tiling code is depicted in Figure 4.

Figure 5 shows that the proposed method has better computational time performance than the non-tiling scheduling code.
Figure 6 indicates that the tile expansions in the proposed method are directly proportional to PSNR and computational
time. Therefore, the trade-off between approximated accuracy and computational time can be balanced by adjusting the
size of the tile expansion. It can also be seen that the amount of tile expansion beyond the kernel radius does not
contribute to accuracy. Usually, PSNR of casting from a 32bit-float image to a 8bit integer image is about 58 dB; thus,
the approximation reaches enough accuracy for 8 bit images.

inte.compute_root().split(y, yo, y, 16).vectorize(x, 4).parallel(yo);
inte.update (0).parallel(R.y);

inte.update(1).vectorize(R.x);

output.compute_root ().split(y, yo, y, 16).parallel(yo);

Figure 4. The schedule of the non-tiling code.

1.0

0.8 l’/"'x._./b—/f
= 0.6
E
()
E
= 0.4 4

0.2

—8— Proposed method
Non-Tiling
0.0 T T T T T
0 2 4 6 8 10 12

Tile Expansion [px]

Figure 5. Computational time of the proposed method and the non-tiling scheduling code. The measurement of the proposed
method is from 0 to 12 for tile expansion.

80

PSNR [dB]
» o o o ~ ~
o (4] o w o (4]

o
o
L

40

0 2 4 6 8 10 12
Tile Expansion [px]

Figure 6. PSNR of the proposed method with respect to the amount of tile expansion from 0 to 12.

5. CONCLUSION

In this paper, we proposed a high-performance scheduling method for recursive filtering of box filtering by using Halide
and OpenMP. Beyond the restriction of the Halide compiler, the proposed method accelerates the recursive filtering by
scheduling with approximated computing. The experimental results show that the proposed method has a better
computational time performance than the non-tiling scheduling code. Also, the trade-off between approximated accuracy
and computational time can be balanced by the amount of the tile expansion.

ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI (JP17H01764, JP18K19813).

REFERENCES

[1] Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., and Durand, F., "Decoupling algorithms
from schedules for easy optimization of image processing pipelines,” ACM Transactions on Graphics, 31, 4, 32
(2012).

[2] Ragan-Kelly, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Amarasinghe, S., "Halide: A language and
compiler for optimizing parallelism, locality, and recomputation in image processing pipelines,” ACM
Programming Language Design and Implementation, 48, 6, 519-530 (2013).

[3] Mullapudi, R. T., Adams, A., Sharlet, D., Ragan-Kelley, J., and Fatahalian, K., "Automatically scheduling
Halide image processing pipelines," ACM Transactions on Graphics, 35, 4, 83 (2016).

[4] Viola, P. and Jones, M., "Rapid object detection using a boosted cascade of simple features," IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 511-518 (2001).

[5] Crow, F. C., "Summed-area tables for texture mapping," ACM SIGGRAPH, 207-212 (1984).

[6] Deriche, R., "Fast algorithms for low-level vision,"” IEEE Transactions on Pattern Analysis Machine
Intelligence, 12, 78-87 (1990).

[7] Van Vliet, L. J., Young, I. T., and Verbeek, P. W., "Recursive Gaussian derivative filters,” International
Conference on Pattern Recognition (ICPR) (1998).

[8] Sugimoto, K. and Kamata, S., "Fast image filtering by DCT-based kernel decomposition and sequential sum
update," IEEE International Conference on Image Processing (ICIP), 125-128 (2012).

[9] Sugimoto, K. and Kamata, S., "Fast Gaussian filter with second-order shift property of DCT-5," IEEE
International Conference on Image Processing (ICIP), 514-518 (2013).

[10] Sugimoto, K. and Kamata, S., "Efficient constant-time Gaussian filtering with sliding DCT/DST-5 and dual-
domain error minimization,” ITE Transactions on Media Technology and Applications, 3, 1, 12-21 (2015).

[11] Sugimoto, K., Kyochi, S., and Kamata, S., "Universal approach for DCT-based constant-time Gaussian filter
with moment preservation,” IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 1498-1502 (2018).

[12] Yano, T., Sugimoto, K., Kuroki, Y., and Kamata, S., "Acceleration of Gaussian filter with short window length
using DCT-1," Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC), 129-132 (2018).

[13] Fukushima, N., Maeda, Y., Kawasaki, Y., Nakamura, M., Tsumura, T., Sugimoto, K., and Kamata, S.,
"Efficient computational scheduling of box and gaussian FIR filtering for CPU microarchitecture," Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 875-879
(2018).

[14] Porikli, F., "Constant time o(1) bilateral filtering," IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2008).

[15] Yang, Q., Tan, K. H., and Ahuja, N., "Real-time o(1) bilateral filtering," IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2009).

[16] Chaudhury, K. N., Sage, D., and Unser, M., "Fast o(1) bilateral filtering using trigonometric range kernels,"
IEEE Transactions on Image Processing, 20, 12, 3376-3382 (2011).

[17] Sugimoto, K. and Kamata, S., "Compressive bilateral filtering,” IEEE Transactions on Image Processing, 24, 11,
3357-3369 (2015).

[18] Sugimoto, K., Fukushima, N., and Kamata, S., "200 FPS constant-time bilateral filter using SVD and tiling
strategy," IEEE International on Image Processing (ICIP) (2019).

[19]He, K., Sun, J., and Tang, X., "Guided image filtering," European Conference on Computer Vision (ECCV)
(2010).

[20] Ishikawa, A., Fukushima, N., Maruoka, A., and lizuka, T., "Halide and GENESIS for generating domain-
specific architecture of guided image filtering,” IEEE International Symposium on Circuits and Systems
(ISCAS) (2019).

[21] Fukushima, N., Sugimoto, K., and Kamata, S., "Guided image filtering with arbitrary window function,” IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018)

[22] Tsubokawa, T., Nakamura, M., Maeda, Y., and Fukushima, N., "Tiling parallelization of guided image
filtering," International Workshop on Frontiers of Computer Vision (IW-FCV) (2019).

[23] Gastal, E. S. L. and Oliveira. M. M., "Domain transform for edge-aware image and video processing,” ACM
Transactions on Graphics, 30, 4 (2011).

[24] Yang, Q., "Recursive bilateral filtering," European Conference on Computer Vision (ECCV) (2012).

[25] Chaurasia, G., Ragan-Kelly, J., Paris, S., Drettakis, G., and Durand, F., "Compiling high performance recursive
filters," High-Performance Graphics (HPG), 85-94 (2015)

