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Abstract—In this paper, we propose an acceleration method
of structural similarity (SSIM) and its multi-scaled version,
called MS-SSIM. The calculation process of SSIM and MS-
SSIM includes multiple Gaussian filters, and the cost of the
filter is dominant for the entire process; thus, to accelerate
SSIM/MS-SSIM, we replace Gaussian filtering using convolution
with sliding DCT. Gaussian filter based on sliding DCT is faster
than the usual convolution method. Besides, its computational
complexity does not depend on the filter window length. Also,
naive implementations of SSIM and MS-SSIM scan image many
times for the pixel-wise operation; however, these operations
can be incorporated into Gaussian filtering. Thus, we optimize
the processing pipeline to achieve high cache-efficiency. As a
result, the proposed SSIM computation was accelerated by 6.36
times and MS-SSIM by 8.11 times faster than the conventional
approach.

Index Terms—SSIM, fast image quality assessment, constant-
time Gaussian filtering, sliding DCT, acceleration

I. INTRODUCTION

Image quality assessment (IQA) is essential for image
processing. The quality metrics are used for the evaluation
and optimization of various image processing methods. IQA
has essential roles in the following research topics, e.g., image
coding, denoising, deblurring, super-resolution, image synthe-
sis, and high-dynamic-range imaging. Due to the availability
of a reference image, the objective IQA has three categories;
full reference (FR), no-reference (NR), and reduced-reference
(RR) methods. In this paper, we focus on FR methods.

The well-known FR metric is the mean-squared error
(MSE) or its log-scaled value of the peak-signal-to-noise ratio
(PSNR). This metric compares degraded signals with ideal
signals via pixel by pixel. This method is fast and straight-
forward; however, it does not correlate well with perceived
human-visual-quality.

IQA research community continually improves the qual-
ity metrics. The representatives are noise quality measure
(NQM) [1], structure similarity (SSIM) [2], information fi-
delity criterion (IFC) [3], and its improved version named
visual information fidelity (VIF) [4], visual signal-to-noise
ratio (VSNR) [5], most apparent distortion (MAD) [6], Riesz-
transform based Feature similarity metric (RFSIM) [7], gra-
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dient similarity (GSIM) [8], feature similarity (FSIM) [9],
spectral residual based similarity (SR-SIM) [10], internal gen-
erative mechanism (IGM) [11], gradient magnitude similarity
deviation (GMSD) [12], visual saliency-induced (VSI) [13],
and perceptual similarity (PSIM) [14].

SSIM is a milestone in the recent history of the IQA
researches; thus, there are many reports for SSIM [15]–
[18]. Also, there are various variants of SSIM. Universal
image quality (UIQ) [19] is extended to SSIM at first.
The multi-scaled version of SSIM, named MS-SSIM [20],
is then extended. The gradient-based SSIM is also reported
in [21]. For shift-invariant issues, the complex-wavelet-based
method (CW-SSIM) [22] is proposed. For improving a pooling
function, combined percentile-fixation-SSIM or FP-SSIM is
proposed [23]. The function is also extended as information
content weighting SSIM (IW-SSIM) [24]. SSIMplus [25] is the
state-of-the-art for video quality metric. Moreover, there are
various image processing applications based on human visual
system (HVS) with SSIM [26]–[29]. The survey of IQA and
its applications are summarized in the following papers [30]–
[33].

For image processing based on SSIM, real-time processing
is required even for IQA. For example, video coding is
performed while optimizing video quality. This optimization
often employ SSIM. In this situation, real-time processing of
SSIM is required. In addition, acceleration of SSIM can reduce
the learning cost of deep learning, such as Generative Adver-
sarial Networks (GAN) [34]. Rouse and Hemami [35] analyze
that the luminance component in SSIM has less importance
than the other; thus, the computation of the luminance factor
can be omitted. The following research is Fast SSIM [36],
[37]. In the Fast SSIM, (1) the luminance component of
each block was computed by using an integral image, (2)
the contrast and structure components of each block were
computed based on 2 × 2 Roberts gradient operators, (3) the
Gaussian-weighting window used in the contrast and structure
components was replaced with an integer approximation. Both
approaches require algorithmic changing; thus, the response
of the SSIM index map becomes mostly changed. For this
reason, Fast SSIM is inappropriate to apply universally, that
is, efficiency of applying Fast SSIM should be verified for each
application. Also, the main bottleneck in computing SSIM is
low-pass filtering of Gaussian filtering (GF); however, the cost
is not well resolved.International Conference on Image Processing and Robot (ICIPRoB), 2020.



To suppress the distortion in the index map, and to improve
the performance of Gaussian filtering, we accelerate the SSIM
index by using sliding DCT for Gaussian blurring [38]–[43].
The Gaussian filtering with the sliding approach has constant
order in filtering kernel radius; thus, the filtering performance
can be improved in the higher scale case. Also, we optimize
the image-processing-pipeline of SSIM computation to have
highly cache efficiency.

The contribution of this paper is threefold:

1) Reduction of computational complexity to O(1) by
replacing naive convoluted GF with constant time GF
based on sliding DCT.

2) Optimization of the computing pipeline of both SSIM
and MS-SSIM to get high cache efficiency.

3) Verification of the accuracy between original SSIM and
proposed one.

II. RELATED WORKS

A. Structural Similarity (SSIM) Index

SSIM is one of the IQA, which considered the structural
similarity of images. This metric is computed by compering
not the pixel-wise error like PSNR but the local-area error
between two images.

Let A and B are reference image and distorted image,
respectively. Image area is denoted by S ⊂ Z2. Then the
SSIM value of a local area whose center is a focusing pixel
p is computed from following;

SSIM(p,A,B)=[l(p,A,B)]α[c(p,A,B)]β [s(p,A,B)]γ , (1)

where l(p,A,B), c(p,A,B), and s(p,A,B) are

l(p,A,B) =
2µApµBp + C1

µAp
2 + µBp

2 + C1
, (2)

c(p,A,B) =
2σApσBp + C2

σAp
2 + σBp

2 + C2
, (3)

s(p,A,B) =
σABp + C3

σApσBp + C3
. (4)

Here, µAp and σAp represent average and variance of a local
area on image A, whose center is p, respectively. Let be C1 =
(K1L)

2 and C2 = (K2L)
2, where L is the dynamic range of

the pixel values. These constant values roles as prevention for
zero division. K1,K2 << 1 are small constant values, and
K1 = 0.01,K2 = 0.03 are used in many cases. SSIM ≤ 1,
and higher value is better. Furthermore, for simplicity, we set
α = β = γ = 1 and C3 = C2/2. Then, (1) is redefined as
follows;

SSIM (p,A,B)=
(2µApµBp + C1)(2σABp + C2)

(µA2
p+µB

2
p+C1)(σA2

p+σB
2
p+C2)

. (5)

In this paper, we use this form to compute SSIM.
Normally, there are many cases for evaluation of entire

images. In this case, we use mean SSIM (MSSIM) or average

pooling with SSIM. The MSSIM averages the total values of
an SSIM index map on each pixel.

MSSIM(A,B) =
1

|S|
∑
p∈S

SSIM(p,A,B), (6)

where, |S| denotes the total number of pixels in the image.

B. Multi-scaled Structural Similarity (MS-SSIM) Index

MS-SSIM is proposed to handle the variations of image
resolution and viewing conditions more flexible. MS-SSIM
with the number of the scale M is defined as follows;

MS-SSIM(p,A,B) =

[lM (p,A,B)]αM
M∏
j=1

[cj(p,A,B)]βj [sj(p,A,B)]γj . (7)

To simplify, in many cases, parameters are set to α = β = γ.
In addition, to enable comparison between different parame-
ters, parameters are normalized as

∑M
j=1 γj = 1.

C. Sliding DCT for Gaussian Filtering

The computational complexity of direct convolution with
Gaussian kernel for an image is O(W ) per pixel, where
W is filtering window length. For acceleration, some O(1)
algorithms are proposed. These methods can smooth image in
constant-time; thus, computational complexity is independent
of filter window length. Among them, a method based on
discrete cosine transform (DCT) is high-performance from
the viewpoint of accuracy and speed. This DCT based GF
has many applications. For example, bilateral filtering [44]
is accelerated [45]–[47]. Also, guided image filtering [48] is
accelerated [49] as well.

In this paper, we also use the DCT based GF in the
calculation of SSIM. Two cascades of 1-D GF realize 2-D
GF because of its separability. Therefore, we consider 1-D
GF below. 1-D Gaussian kernel hn ∈ R is defined as;

hn := η−1e−
n2

2σ2 ,

N−1∑
n=−N+1

e−
n2

2σ2 , (8)

where σ ∈ R+ is a spatial scale parameter, and η ∈ R is
normalized factor. Then, DCT representation of kernel is

hn =

N−1∑
k=0

ĥ(k)C(k)
n (9)

C(k)
n := cos

(
2π

T
(k + k0)(n+ n0)

)
, (10)

where ĥ(k) is the k-th weight coefficient. Therefore, the
convolution of kernel and input signal x is defined as;

(x ∗ h)t =
N−1∑

n=−N+1

xt+nhn =

N−1∑
k=0

ĥ(k)
N−1∑

n=−N+1

xt+nC
(k)
n

(11)

=

N−1∑
k=0

ĥ(k)x̂
(k)
t , x̂

(k)
t =

N−1∑
n=−N+1

xt+nC
(k)
n , (12)



where x̂(k)t is a short-time transform coefficient of the input
sequence xt at time t. Then, ĥ(k) is commutable form the
following recursion formula in constant-time.

x̂
(k)
t−1 + x̂

(k)
t+1 = 2C

(k)
1−n0

x̂(k) + xt−NC
(k)
−N+1 + xt+NC+N−1

(13)

− xt−N+1C
(k)
−N − xt+N−1C

(k)
+N . (14)

This relationship among three terms is called second shift
property, and the operation, which computes x̂(k)t+1 from this
formula in constant-time, is called sliding transform. Here,
spectrum of Gaussian is also Gaussian, and it attenuates
exponentially. Therefore, k can be truncated at a few terms.
DCT is classified into DCT-1 to DCT-8 according to the
differences of three parameters T, k0, n0. In this paper, we
use DCT-5.

III. PROPOSED METHOD

A. Acceleration of SSIM

In this section, we propose a fast SSIM implementation.
First, in the calculation process of SSIM, the bottleneck is GF,
because others are pixel-wise operations. Hence, by replacing
the naive convoluted GF with DCT based GF, the calculation
amount is reduced. Its total complexity is reduced to O(1). As
a result, we achieve an acceleration of SSIM.

Second, we consider the computing pipeline of SSIM. To
obtain µ and σ, which are necessary for computing SSIM,
we cannot ignore the data dependency shown in Fig. 1. In
the naive implementation, each arrow is shown in Fig. 1 is
calculated as one process as a part of the image processing
pipeline of SSIM. That is, for each GF and pixel-wise calcu-
lation is treated as independent processes, and every process
re-scans images from top to bottom. This multiple scanning
causes low memory-access-efficiency and increases the cache
miss. Therefore, we try to realize efficient implementation by
improving the calculation pipeline efficiency by considering
the data dependency.

Let us consider separable filtering in the order of horizontal
filtering and then vertical filtering. In step 1, we consider
horizontal filtering. As shown in Fig. 2, we copy one line from
image A and B to each line-buffer, respectively. At the same
time, we calculate A2, B2, and AB, and then write to each
line-buffer. In step 2, apply 1-D GF to the five line-buffers,
which is given in the previous process, and then write back to
the A,B. Here, writing to A,B is in-place processing, i.e.,
we share input and output memory space. In the other three
processes, we write the line-buffers to three image areas, which
allocated in advance. After steps 1 and 2, we move to the next
rows, and then we repeat the process until the last row. For
each filtering, we simultaneously process five filters at one
scan-line. In other words, we use one for-loop, not five for-
loops. When horizontal process is finished, we obtain g1(A),
g1(B), g1(A2), g1(B2), and g1(AB), where g1(·) denotes
1-D GF.

Next, remaining vertical process is then just applied to five
images, i.e., g1(A), g1(B), g1(A2), g1(B2), and g1(AB).
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Fig. 1: Data dependency of SSIM. A,B: two input images.
Solid arrows represent Gaussian Filters, and dashed arrows
represent pixel-wise operations.
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Fig. 2: Horizontal process of SSIM. First, copy image to line
buffers from A,B. Second, filter line-buffers and then write
to images. Next, move to the next row to repeat this process.

We also merge the five filters into one-loop. Note that, at
this time, we do not write the output of 5 GF results to the
five image area but directly write to an output image with
calculating SSIM. Because after obtaining the five filtered
results, resulting processes are pixel-wise operations, and the
operations do not have a dependency. In this method, we can
reduce the number of scans according to incorporate the pixel-
wise calculation into GF.

B. Acceleration of MS-SSIM

Next, we optimize MS-SSIM. Convolution GF is replaced
with DCT based GF as well. Also, the main idea is almost the
same as the proposed SSIM, so we overview the process. A
term l(·) in (7) are calculated first. Then, two terms c(·), s(·)
are calculated at the same time. In this two-step, pixel-wise
calculations are incorporate into GF as well as proposed SSIM.



TABLE I: The number of for-loops for naive and proposed
SSIM and MS-SSIM computation. M is the number of scales.

method SSIM MS-SSIM
naive 27 10 + 24M
proposed 2 2M

IV. EXPERIMENTAL RESULTS

In our experiments, Intel Core i7-7500U CPU 2.70 GHz
(2 cores /4 threads) with main memory 8 GB on Windows 10
64-bit were employed. We implemented all methods in C++
by using OpenCV [51], and also we vectorized the code by
AVX. Note that the code is worked for a single thread, not for
multi-threads. The parameter σ of GF using in SSIM is fixed
to 1.5, and a kernel size of naive implementation is fixed to
11× 11. The approximate number of terms of DCT based GF
is fixed to 3.

For preliminary, we evaluated the accuracy of the approxi-
mated Gaussian filtering based on DCT by mean squared error
(MSE). In the comparison of a naive convolution GF with
DCT based GF, the difference between both resulting Gaussian
filters is 5.15× 10−7. The result is a low enough error.

Next, we evaluated the accuracy and speed of the proposed
SSIM and MS-SSIM. Here, we assume that the OpenCV
implementation is naive, and this naive implementation is the
ground truth result. Then, we evaluated the error between
the ground truth and the proposed method by MSE. Notice
that the purpose of this experiment is to evaluate how close
the DCT based SSIM is to the original SSIM, and it is
not a proposal of IQA, which is superior in accuracy to
SSIM. The efficiency of SSIM has been already justified.
Input is grayscale Lenna image, and Lenna image distorted
by Gaussian blur (σ = 0.99999, kernel size = 7 × 7) or
JPEG compression (QP=30). In MS-SSIM, M = 5 and
β1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 = γ3 = 0.3001,
β4 = γ4 = 0.2363, α5 = β5 = γ5 = 0.1333 were used.

The result are shown in Tables I,II. Table I indicates that the
proposed approach dramatically reduces the number of image
scan loops; thus, the cache efficiency is improved. Table II
shows that the proposed SSIM accelerates 6.36 times faster
than the naive implementation, and the proposed MS-SSIM
accelerates 8.11 times faster than the naive implementation.
Besides, MSEs of both SSIM and MS-SSIM index maps are
low, and the accuracy of SSIM is almost the same as that of
a naive implementation. It can be said that the naive imple-
mentation can be reproduced in the accuracy. The SSIM/MS-
SSIM index maps are shown in Figs. 3, 4. It can be visually
confirmed that there is no difference. Just in case, the same
experiment was done with Kodak Photo CD [50] including 24
images, except for the calculation time. These images were
also converted to grayscale in advance. The average values of
the results obtained from each image are shown in Table III.
First, by comparing MSSIM/MMS-SSIM, the accuracy is high
as in the case of using Lenna image. Second, although average
of error by MSE is higher than Lenna image, is’s still high
accuracy.

V. CONCLUSION

In this paper, we proposed an acceleration method for SSIM
and MS-SSIM. The proposed method was based on sliding
DCT, which has constant time property for Gaussian filtering.
Also, we optimized the computing pipeline of SSIM to have
high cache efficiency. Experimental results showed that the
proposed SSIM and MS-SSIM accelerate 6.36 times and 8.11
times faster than the naive implementation, respectively.

As our future work, we will verify the relationship between
subjective and objective assessment scores of the accelerated
method via various image data set, such as LIVE [52],
TID2008 [53], TID2013 [54], Categorical image quality
(CSIQ) database [55], KADID-10k Image Database [56], and
ESPL Synthetic Image Database [57].
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