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ABSTRACT

Bilateral filtering is a typical edge-preserving smoothing and
it is used in various applications. The main issue of bilat-
eral filtering is the processing time. In order to solve this
problem, constant-time bilateral filtering has been proposed.
The constant-time bilateral filter is an effective method for
grayscale images, but it takes high cost for color images be-
cause of the curse of dimensionality. Some algorithms spe-
cialize in constant-time color bilateral filtering for color im-
ages by using clustering. However, the clustering has ran-
domness, and computational cost itself is also high. In this
paper, we propose an acceleration method of clustering by
using K-means++, tiling, and subsampling, and also achieve
improvement of the stability.

Index Terms— edge-preserving filter, color bilateral fil-
ter, constant-time bilateral filter, tiling, K-means++

1. INTRODUCTION

Edge-preserving smoothing can preserve contours in an im-
age while its smoothing process. A typical example of the
edge-preserving filter is bilateral filtering (BF) [1]. The ker-
nel in BF composites two kernels according to pixel positions
(spatial kernel) and pixel value (range kernel). BF is used in
various image processing applications, such as denoising [2],
deblurring [3], detail enhancement [4], HDR [5], haze remov-
ing [6], stereo matching [7], and optical flow [8].

The problem of BF is its computational complexity. The
computational time of BF is much higher than that of a linear
filter, such as Gaussian filtering (GF), since BF is spatially
variant filtering.

There are some acceleration methods for BF in gray and
color images. For grayscale image, early works use FFT or
separable filtering for acceleration [5, 9–12]. Recent works
use constant-time Gaussian filtering (GF) [13, 14] for spa-
tial convolution, then the cost of BF becomes constant per
pixel [15–18], i.e., computational time does not depend on
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the kernel radius. The O(1) BF is effective for grayscale
images; however, its computational complexity increases ex-
ponentially for color or multi-channel images because of the
curse of dimensionality.

For the curse of dimensionality in constant-time color bi-
lateral filtering (O(1) CBF), early works spatially subsample
images for acceleration [16, 19]. Following works use ran-
dom sampling of approximating functions of the range kernel
to reduce the number of convolutions [20–22]

Recent works [23–25] further improve the performance
by using clustering. Therefore, the accuracy of O(1) CBF
depends on the clustering result. Also, reasonable clustering
methods utilize a randomized algorithm; thus, the filtering re-
sults have variance. Moreover, the computational cost of the
clustering itself becomes overhead.

In this paper, we propose a method to solve the problems
of the clustering-based O(1) CBF [24,25], such as high com-
putational cost and randomness, by using K-means++ clus-
tering [26], tiling [17], and subsampling. The contributions
of this paper are as follows:
• Revealing the problem of randomness in clustering-

based CBF and suppressing the variation of the ac-
curacy due to random sampling by using tiling and
K-means++.
• Showing that the tiling and K-means++ also improve

the approximation accuracy per cluster.
• Showing that clustering is insensitive to subsampling,

and then subsampling improves the speed of clustering
processing itself. Also, tiling improves the speed of
filtering.

2. O(1) COLOR BILATERAL FILTER

We firstly define color bilateral filtering (CBF). AD-dimensional
R-tone color image f : S 7→ R, where S ⊂ ZD andR ⊂ R3

denotes the spatial domain and range domain (generally,
D = 2 and R = 256), respectively. Using a pixel position
p ∈ S, its color intensity vector fp ∈ R, and its neighboring
pixels N(p) ⊂ R, CBF [1] is defined as follows;

f̂p =

∑
q∈N(p) ws(p, q)wr(fp,fq)fq∑
q∈N(p) ws(p, q)wr(fp,fq)

, (1)



where ws : S ×S 7→ R is a spatial kernel and wr : R×R 7→
R is a range kernel. The most common choice of the kernels
is Gaussian distribution:

ws(p, q) = e
− ‖q−p‖22

2σ2s , wr(a, b) = e
− ‖b−a‖22

2σ2r , (2)

where σs ∈ R+ is spatial scale and σr ∈ R+ is range scale.
In O(1) CBF, the color information is clustered using the

K-means method, and the dominant color vectors are deter-
mined at K points, where µk ∈ R3, (k = 1 . . . ,K) is the
dominant color vectors. The main idea of O(1) CBF is to de-
compose BF into the sum of multiple Gaussian filters, using
the dominant colors as sampling points.

2.1. Soft-assignment Coding [24]
Sugimoto et al. apply soft-assignment coding [27, 28]
CBF [24] Soft-assignment coding is known in general object
recognition tasks. This approximation generates component
images corresponding to some dominant color vectors. The
approximate accuracy is enhanced by utilizing linear combi-
nations of them derived from soft-assignment coding. The
soft-assignment coding based CBF is defined by;

f̂p ≈
K∑

k=1

αk(fp)
ξµk(p)

ζµk(p)
, (3)

and ξµk : S 7→ R and ζµk : S 7→ R are defined by

ξµk =
∑

q∈N(p)

ws(p, q){wr(µk,fq)fq}, (4)

ζµk =
∑

q∈N(p)

ws(p, q){wr(µk,fq)}, (5)

where αk is weights derived by soft-assignment coding, µk is
dominant color vector determined by clustering.

αk(x) =
exp (−λ‖x− µk‖22)∑K
l=1 exp (−λ‖x− µl‖22)

, (6)

where λ is a smoothing parameter. Note that the convo-
lution of

∑
q∈N(p) ws(p, q){·} can be calculated in O(1)

by constant-time Gaussian filtering (O(1) GF) [14]. The
required number of convolutions is 4K, where K in the
denominator and 3K in the numerator.

2.2. Nyström Approximation [25]
Nair et al. [25] apply Nyström approximation [29] to the prob-
lem of eigen value decomposition (EVD) in O(1) CBF. First,
we explain O(1) BF [30, 31] using EVD of the range ker-
nel matrix. Let T = {fx : x ∈ S} be a list consisting of
pixel values and let T = {t1, t2, . . . , tm} be some ordering
of the elements in T , where m is the number of elements.
This means that, given l ∈ [1,m], tl = fx for some x ∈ S.
We track the correspondence by the index map;

τ(x) = l if tl = fx. (7)

We next define the kernel matrixW ∈ Rm×m given by

W (i, j) = wr(ti, tj). (8)

Substituting (8) for (1) gives

f̂p =

∑
q∈N(p) ws(p, q)W (τ(p), τ(q))fq∑
q∈N(p) ws(p, q)W (τ(p), τ(q)))

. (9)

SinceW is a symmetric matrix, EVD ofW is as follows;

W =

m∑
k=1

λkuku
T
k , (10)

where λk(λ1 ≥···≥ λm) ∈ R are its eigenvalues, and uk ∈
Rm are the corresponding eigenvectors. Substituting (10) to
(9) gives

f̂p =

∑
q∈N(p) ws(p, q)

∑m
k=1 λkuk(τ(p))uk(τ(q))fq∑

q∈N(p) ws(p, q)
∑m
k=1 λkuk(τ(p))uk(τ(q))

. (11)

On switching the sums, this becomes

f̂p =

∑m
k=1 λkuk(τ(p))

∑
q∈N(p) ws(p, q){uk(τ(q))fq}∑m

k=1 λkuk(τ(p))
∑

q∈N(p) ws(p, q){uk(τ(q))}
. (12)

Let Ŵ ∈ Rm×m be the matrix of low rank approximation of
W using the top K (K � m) eigenvalues and eigenvectors.

Ŵ =

K∑
k=1

λkuku
T
k , (13)

Using Ŵ instead of W in the formula of (12), CBF can be
approximated as

f̂p ≈
∑K
k=1 λkuk(τ(p))

∑
q∈N(p) ws(p, q){uk(τ(q))fq}∑K

k=1 λkuk(τ(p))
∑

q∈N(p) ws(p, q){uk(τ(q))}
. (14)

As a result, CBF can be processed in constant time [30, 31],
similar to Sugimoto et al. [24]. The required number of
convolutions is 4K, where K in the denominator and 3K in
the numerator.

In the grayscale case, the size of the matrix W is 256 ×
256. However, in the color case, the matrix size is millions
× millions, i.e., 2563. Therefore, EVD of W is difficult. For
Nyström approximation [29] of EVD ofW [25], we first con-
struct a small range kernel matrix A and then extrapolate its
eigenvectors to approximate those of W . A ∈ RK×K is
defined using dominant color vectors µk determined by clus-
tering as

A(i, j) = wr(µi,µj) (i, j ∈ [1,K]). (15)

The size of A is much smaller than that of W . Thus, we can
easily compute EVD:

A =

K∑
k=1

λkvkv
T
k , (16)

where λk ∈ R , and vk ∈ RK . We next construct B ∈
RK×m:

B(i, j) = wr(µi, tj) (i ∈ [1,K], j ∈ [1,m]). (17)



This matrix is used to extrapolate uk as follows;

uk =
1

λk
BTvk. (18)

These calculations eliminate the need to solve EVD ofW and
solve the problem of the curse of dimensionality.

3. PROPOSED METHOD
In this section, we introduce three techniques for clustering in
CBF, such as K-means++, tiling, and subsampling. First of
all, formulating O(1) CBF, Sugimoto et al. is as follows;

f̂p ≈
K∑
k=1

αk

∑
q∈N(p) ws(p, q){wr(µk,fq)fq}∑
q∈N(p) ws(p, q){wr(µk,fq)}

, (19)

and Nair et al. is as follows;

f̂p ≈

∑K
k=1

1
λk
X(fp,k)

∑
q∈N(p) ws(p, q){X(fq ,k)fq}∑K

k=1
1
λk
X(fp,k)

∑
q∈N(p) ws(p, q){X(fq ,k)}

(20)

where αk is coefficient and X(f ,k) =
∑K

j=1 wr(µj ,f)vk(j).
From these equations, filtering results depend on the value of
µk. In other words, the accuracy can be improved by improv-
ing how to take µk, i.e., sampling points.

3.1. K-means++
K-means++ [26] is a variant of K-means. K-means randomly
takes initial centroids. By contrast, K-means++ determines
the initial centroids by the following procedure. Let ci ∈
R3, (i = 1 . . . ,K) be the initial centroids to be determined.

1. Choose one centroid c1 at random from data points.

2. For each data point x, compute D(x), which is the
shortest distance between x and the closest centroid,
where we have already chosen.

3. Stochastically choose one new centroid ci according to
weighted probability distribution D(x)2∑

D(x)2 .

4. Repeat Step 2 until K-point centroids are chosen.

Each initial centroid is placed away from each other by
K-means++ because of weighted probability distribution;
thus, bias among sampling points are smaller than K-means.
Therefore, K-means++ improves clustering accuracy and
stability.

Table 1 shows the minimum, maximum, variance, and the
average of the within-cluster sum of squares (WCSS) [32]
when the color vector clustering is performed 1000 times for
the image ”Kodim04”, where the number of clusters is K =
15). The clustering is performed by setting the luminance
range of the image from 0-255 to 0-1. The statistics show that
stability and accuracy are improved from K-means.

3.2. Tiling
Tiling is a technique that divides an input image into multiple
images (sub-images) and then performs image processing for
each sub-image. Finally, the processed sub-images are com-
bined into an output image. When applying the tiling method,

Table 1: Within-cluster sum of squares (WCSS) statistics for
each method (K = 15). ∗ is the total WCSS for each tile.

Statistics\Method K-means K-means++
K-means

with tiling∗
K-means++
with tiling∗

minimum 1495.99 1493.02 1000.21 831.40
maximum 3002.58 1713.60 1436.63 875.64
variance 42195.58 1126.32 5229.76 58.94
average 1836.37 1544.17 1178.75 849.36

(a) without tiling (b) with tiling

Fig. 1: 3D plot of pixel values of image ”Kodim04” and clus-
tered color vectors (gray points and white points).

it is necessary to pad the sub-images by the kernel radius. The
padding introduces redundant processing.

The tiling technique limits the dynamic range of input im-
ages to improve the performance in the grayscale bilateral fil-
tering case [17]. For the color image case, the color space of
each sub-image is generally smaller than that of the whole im-
age. Therefore, by performingO(1) CBF for each sub-image,
O(1) CBF works effectively with fewer dominant color vec-
tors. Also, the clustering result becomes more stable.

Figure 1 shows the images of 8 clustered color vectors
without tiling and 8 clustered color vectors for each sub-
image using tiling, where we divided the image into 4 × 4
for tiling. Gray points represent pixel values in the image
”Kodim04” and white points represent clustered color vec-
tors. This figure suggests that the use of tiling covers a
broader range of cluster points. Table 1 shows the total
WSCC for each tile. This table means that the pixel values
are dense near the sampling points due to tiling.

Furthermore, the tiling method can accelerate O(1) CBF
itself [17]. The tiling method adopts the granularity of the
parallelization and improves its efficiency. Also, the locality
of data access increases, which improves cache efficiency.

3.3. Subsampling
To accelerate clustering, we subsample an input image for
clustering. If we subsample the input image for entire im-
age processing, the quality of filtering becomes obviously
degraded. However, we utilize the subsampled image only
for clustering. Subsampled and full-sampled 3D image his-
togram, e.g., Fig. 1, is similar; thus, the side-effect of the
subsampling is small. Also, the variance of the tiled sub-
image is smaller than the full image; thus, we can keep higher
quality with tiling than the non-tiled case.
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Fig. 2: K w.r.t. PSNR [dB] on Sugimoto et al.
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Fig. 3: K w.r.t. PSNR [dB] on Nair et al.

4. EXPERIMENTAL RESULTS

We evaluated the performance of our method for approxima-
tion accuracy and stability. All the codes were implemented
in C++ and developed on Visual Studio 2017, parallelized
by OpenMP and vectorized by AVX on Intel Core i9-9900K
@ 3.60GHz. The accuracy was quantified as peak signal-to-
noise ratio (PSNR) between the naı̈ve CBF and O(1) CBF.
For clustering, we used K-means (conventional), K-means++,
K-means with tiling, K-means++ with tiling, and median cut.
The median cut is a typical color quantization, e.g., used in
GIF image format, and the method does not have random-
ness. In the experiment, we used O(1) GF [14] for the spa-
tial convolutions. We used the test image Kodak 24 image set
(512 × 768). For tiling, we divided input images into 4 × 4.
For Sugimoto et al. [24], we set a parameter λ = 0.5

255 . The
kernel radius was 3σs for both methods. We subsampled the
input image width and height into 1/2 before clustering.

Firstly, we compared the approximation accuracy. Fig-
ures 2, 3 show the results of accuracy comparison, and plot
the relationship between the number of clustered colors K
and averaged PSNR with 1000 trials. Note that the number of
convolutions is 4K. From these results, PSNR is slightly im-
proved by K-means++ or tiling. Moreover, it is significantly
improved by K-means++ with tiling.

Secondly, we evaluated the stability because the accuracy
ofO(1) CBF using clustering varies depending on the cluster-
ing result. Table 2 shows the minimum, maximum, variance,
and average PSNR of 1000 trails of O(1) CBF. We confirm
that our approach decreases the variance and improves the av-
erage PSNR; thus, the stability is improved.

Thirdly, we visually compared Naı̈ve CBF and O(1) CBF
(using K-means++ with tiling). Figure 4 shows the filtered
images of each method. We confirm that the approximation
of O(1) CBF is sufficiently accurate.

Lastly, we compared the computational time. Table 3
shows the computational time [ms] for each method. The
tiling method is faster in full/sub-sampling cases. In addi-
tion to the reason described in section 3.2, the overhead of
clustering for large numbers of data is considerable.

(a) Input image (b) Naı̈ve CBF (∞)

(c) Sugimoto (44.9 dB) (d) Nair (50.7 dB)

Fig. 4: Visual comparison and PSNR [dB] between naı̈ve and
O(1) CBF (σs=5, σr=30,K=15).

Table 2: PSNR statistics for each method with sub/full sam-
ple (σs = 5, σr = 30,K = 15) (a) K-means, (b) K-means++,
(c) K-means with tiling, (d) K-means++ with tiling. ∗ means
full-sampled, and no mark means sub-sampled. Note that (a)∗

is conventional conpetitives [24, 25].

Sugimoto et al.
Statistics\Method (a) (b) (c) (d) (a)∗ (b)∗ (c)∗ (d)∗

minimum 32.49 37.17 37.65 44.95 32.94 37.83 38.19 44.91
maximum 44.84 44.00 45.76 46.68 45.37 44.56 46.37 46.73
variance 4.75 1.26 2.21 0.06 4.70 1.01 1.48 0.06
average 38.48 40.29 43.05 45.77 39.45 41.77 43.61 45.78

Nair et al.
Statistics\Method (a) (b) (c) (d) (a)∗ (b)∗ (c)∗ (d)∗

minimum 30.14 30.22 34.94 50.34 30.27 30.55 34.82 50.44
maximum 47.94 47.45 52.35 53.80 48.54 47.53 53.16 53.90
variance 16.84 8.95 10.18 0.24 14.93 3.20 8.49 0.17
average 38.56 42.22 47.20 51.66 40.04 44.05 48.30 51.61

Table 3: Computational time [ms] for each method with
sub/full sampling (σs = 5, σr = 30,K = 15). ∗ means
conventional method [24, 25].
O(1) CBF\Method K-means (a) K-means++ (b)

K-means
with tiling (c)

K-means++
with tiling (d)

Sub-Sugimoto 80 79 56 52
Sub-Nair 120 120 58 58

Full-Sugimoto ∗196 218 142 145
Full-Nair ∗236 260 159 159

5. CONCLUSION
This paper proposed a method to improve accuracy of O(1)
CBF using K-means++ and tiling, and accelerate it by tiling
and subsampling. In the experiment, our method showed
higher performance in accuracy, stability, and computational
time.
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