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ABSTRACT

This paper presents a constant-time bilateral filter that sup-
ports arbitrary range kernel designed via singular value de-
composition (SVD). Bilateral filter (BF) suffers from high
computational complexity in real-time processing due to the
time-variant kernel. Although various accelerations for BF
have been proposed, most of them have not achieved both
arbitrary range kernel and tight computational complexity si-
multaneously. The proposed method supports arbitrary range
kernel but requires half computational complexity of most
state-of-the-art methods. Moreover, we present two imple-
mentation techniques well matched to the SVD approach:
range fitting and tiling strategy. Experiments show that, in the
cases of major range kernels, the proposed method not only
runs faster (200 FPS) but also achieves higher accuracy than
the state-of-the-art methods.

Index Terms— SVD, constant-time bilateral filtering,
edge-preserving filtering, acceleration

1. INTRODUCTION

Bilateral filter (BF) [1, 2] is one of the major edge-preserving
smoothing methods widely used in image processing. Vari-
ous applications have utilized BF such as denoising [3], high
dynamic range imaging [4], detail enhancement [5], deblur-
ring [6, 7], stereo matching [8], haze removing [9], depth map
refinement [10], optical flow estimation [11] and so on. BF
smoothes an image using a composite kernel depending on
pixel position (spatial kernel) and pixel intensity (range ker-
nel). Because the kernel shape differs for each target pixel,
the computational complexity is much higher than linear fil-
ters such as Gaussian filter (GF).

In order to overcome this difficulty, many accelerated
algorithms have been proposed in the past. Most of them
share the general framework that approximate BF by an ap-
propriate combination of linear filters. The piece-wise linear
approximation [4], an early approach for acceleration, de-
composes BF into multiple of GFs implemented by FFT.
Separable BF [12] makes the composite kernel separable to
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Table 1: Characteristics of major accelerated BFs.
Kernel type Conv. sharing

Linear [18] Arbitrary N/A
Raised Cosine [21, 22, 23] Gaussian N/A
Polynomial [26, 27] Differentiable Possible
Compressive BF [24, 25] Gaussian Possible
EVD [28, 29] Arbitrary N/A
SVD (Proposed) Arbitrary Possible

achieve the computational complexity O(r) where r is fil-
ter window radius. Unfortunately, this approach causes low
accuracy because the composite kernel is essentially non-
separable. This approach was improved in accuracy in [13].
Another approach for acceleration is a combination of spatial
downsampling [14, 15]. As a more algorithmic improvement,
constant-time, or O(1), BF is considered as state-of-the-art
for this topic where constant-time means the per-pixel com-
plexity does not depend on filter window radius r. The first
method [16] utilized integral histogram [17]. Real-time O(1)
BF [18] further accelerates it using recursive GF [19, 20]. The
raised cosine based approximation [21, 22, 23], compressive
bilateral filtering [24, 25], Taylor decomposition based ap-
proximation [26, 27], and eigenvalue decomposition (EVD)
based approach [28] well approximate BF than the piece-wise
linear approximation.

Recently, a remarkable technique has been reported for
reducing computational complexity. Deng [25] succeeded to
reduce the number of GFs by half as compared with [24] by
sharing the results of GFs for the numerator and denominator
of BF. However, the range kernel is limited to Gaussian. Al-
though the EVD method [28] supports arbitrary range kernel,
the combination with convolution sharing has not been found
yet. The polynomial approximations [26, 27] shares numera-
tor/denominator convolutions but are limited to differentiable
range kernel. Table 1 lists characteristics of each method.

This paper presents an accelerated O(1) BF for the ar-
bitrary range kernel that provides convolution sharing. We
overcome the difficulty using singular value decomposition
(SVD). Our contributions are as follows: 1) Our SVD method
reduces the number of convolutions by half by sharing the re-
sults of GFs in the numerator and denominator of BF, 2) Our
method supports arbitrary range kernels, and 3) Our method
enhances both computational complexity and approximate ac-
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curacy by using image tiling strategy and range fitting.

2. O(1) BILATERAL FILTERING

Let us discuss a D-dimensional R-tone grayscale image f :
S 7→ R where S ⊂ ZD denotes the domain of pixel positions
andR = {0, . . . , R− 1} ⊂ Z denotes dynamic range (gener-
ally, D = 2 and R = 256). Using a pixel position p ∈ S and
its intensity fp ∈ R, BF [1] is defined by

f̂p =

∑
q∈S ws(p, q)wr(fp, fq)fq∑
q∈S ws(p, q)wr(fp, fq)

, (1)

where ws : S×S 7→ R is spatial kernel and wr : R×R 7→ R
is range kernel. The most common choice is Gaussian:

ws(p, q) = e
− ‖q−p‖22

2σ2s , wr(a, b) = e
− (b−a)2

2σ2r (2)

where σs ∈ R+ is spatial scale and σr ∈ R+ is range scale.
In O(1) BF [24, 25, 28, 29], the range kernel is generally

approximated by separable formwr(a, b) ≈
∑K−1

k=0 φk(a)ψk(b).
By plugging it to (1),

f̂p≈
∑K−1

k=0 φk(fp)
∑

q∈S ws(p, q){ψk(fq)fq}∑K−1
k=0 φk(fp)

∑
q∈S ws(p, q){ψk(fq)}

. (3)

In this equation, {·} can be regarded as intermediate images
and

∑
q∈S indicates their convolution. This separable ap-

proximation results in BF decomposed into a product sum
of 2K convolutions. By implementing the convolutions as
O(1) filters including [30, 31, 32], BF (3) can run in O(1)
time per pixel. In this framework, our purpose is to achieve
higher approximate accuracy using the smaller number of
convolutions, or intermediate images. In existing methods,
as φk(·) and ψk(·) in (3), trigonometric functions [24, 25]
for the Gaussian range kernel, and eigenvectors for arbitrary
kernels [28, 29] have been used.

As a remarkable approach, [25] succeeded to reduce the
number of convolutions by half by sharing the results of con-
volutions in the numerator and denominator of (3). However,
this method does not ensure to minimize least-squares error.

3. PROPOSED METHOD

3.1. Range Kernel Decomposition via SVD

We proposeO(1) BF that supports convolution sharing for ar-
bitrary range kernel approximated in a least-squares manner.
Inspired from [25], we reformulate (1) as

f̂p − fp =

∑
q∈S ws(p, q)wr(fp, fq)(fq − fp)∑

q∈S ws(p, q)wr(fp, fq)
. (4)

By newly defining w̃r(a, b) = wr(a, b)(b − a), we also de-
compose it into w̃r(a, b) ≈

∑K−1
k=0 φ̃k(a)ψ̃k(b) in the numer-

ator. Substituting them for (4), BF is rewritten as
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Fig. 1: MSE of kernel approximation via SVD.

f̂p−fp ≈
∑K−1

k=0 φ̃k(fp)
∑

q∈S ws(p, q){ψ̃k(fq)}∑K−1
k=0 φk(fp)

∑
q∈S ws(p, q){ψk(fq)}

. (5)

If ψk(a, b) = ψ̃k(a, b), we can share the convolution results
of the numerator and denominator, which means the number
of the convolutions is reduced from 2K to K.

We can find such a kernel decomposition via SVD. First,
we introduce W , W̃ ∈ RR×R and W [a, b] = wr(a, b),
W̃ [a, b] = w̃r(a, b) where [·] denotes element accessing op-
erator. By applying SVD to the vertically-connected matrix
X = [W>, W̃>]> ∈ R2R×R, they can be approximated
by the top-K components. Using the singular vectors, each
element of X can be represented as the separable form

X[a, b] ≈
K−1∑
k=0

σkuk[a]v
>
k [b], (6)

where σk (σ0 ≥ . . . ≥ σK−1) is the k-th singular value, and
uk ∈ R2R, vk ∈ RR are the left/right singular vectors. If
we set to ψk(b) = ψ̃k(b) = σkvk[b], the intermediate images
are shared. Similary, we obtain φk(a) = uk[a] and φ̃k(a) =
uk[a+R]. Thus, we can perform (5) by K convolutions.

3.2. Range Fitting

The default dynamic range in an image is usually [0 : 255],
but the actual range depends on the image content. We do not
use out of the actual range in the bilateral filter; thus, we can
reduce the matrix size of W by Imin and Imax, where the min-
imum and maximal intensity in the input image. We call the
process, range fitting. After the range fitting, the least square
error in the approximated range kernel becomes small. Based
on the Frobenius norm, the mean least square error between
the ideal range kernel and the approximated one is defined as:

e(K,IR)=

∑Imax
a=Imin

∑Imax
b=Imin

{wr(a,b)−
∑K−1

k=0 σkuk[a]vk[b])}2

(IR + 1)× (IR + 1)
.

(7)

Figure 1 shows the error for with respect to IR = Imax−Imin

and K. When IR is small, the error of the kernel is small;
thus, we approximate the bilateral filtering well. The per-
formance of the range filtering is further improved by tiling,
which is introduced in the next section.
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The SVD computation is overhead costs; thus, we utilize
look-up tables (LUTs) to save the computational time. For
computing the range kernel based on the SVD, we need the
singular value and vectors σk, uk. The LUT size of the sigu-
lar values is IR. The size of vectors is K × IR To keep the
resulting values, the size of the LUT is 2 × K × IR. The
singular values and vectors are changed based on σr, K, and
IR. Therefore, we should pre-compute the values for each
parameter for the LUT.

3.3. Efficient Computational Scheduling

This section discusses the efficient computational scheduling
of O(1) BF. In general, the whole process of (5) consists of
four subprocesses: decomposition D, convolution C, prod-
uct sum P and normalization N . After precomputation such
as SVD, we first generate some intermediate images from an
input image as

D(p, k) = ψk(fp) = ψ̃k(fp). (8)

All the intermediate images are then convolved with spatial
kernel ws as

C(p, k) =
∑
q∈S

ws(p, q)D(p, k) (9)

If it is Gaussian spatial kernel, one can use an efficient O(1)
GF such as [30, 31, 32] instead of naı̈ve Gaussian convolu-
tion, which results in O(1) BF. After computing two product-
sums from these results, we normalize the results for each
pixel as

N(p) =
PN(p)

PD(p)
=

∑K−1
k=0 φ̃k(fp) C(p, k)∑K−1
k=0 φk(fp) C(p, k)

. (10)

Note that the intermediate image C(p, k) is shared both in
numerator and denominator. These subprocesses should be
efficiently operated in real-time processing.

We design the whole process by utilizing parallel process-
ing on the CPU. Here, we assume 2D image filtering, i.e.,
p = [x, y]>. In most cases, it is adequate to parallelize
the outermost loop for efficient parallel computation in im-
age processing. The tendency, however, is changed by the
length of image processing pipeline and the kinds of image
processing.

Since the D, C, and P steps contain triple loops (x, y, k)
and the N step has double loops (x, y), parallelizing the k-
loop seems the most effective. The important point is that
the number of elements must be sufficiently more massive
than the number of CPU cores for parallelizing load balance.
Since the number of k is 4–20 in general, the number is not
sufficient for multi-core CPUs. In this case, parallelizing the
second outer loop with respect to y could be more effective.

The C step is an exception because we use recursive pro-
cessing for effective convolution [30, 31, 32]. The recursive

Fig. 2: Illustration of 4×4 tiling. The subimages are expected
to have lower contrast (narrower range) than the full image.

filter has a dependency on the processing pixel order of x and
y. In this case, we should parallelize the k-loop. Consider-
ing memory cache and processing pipeline, parallelizing the
k-loop in the step before convolution seems better depend-
ing on the processing unit. In the remaining loops, y loop
parallelization is effective. As described in computing steps,
the O(1) BF has multiple fork-join parallel processes and the
complex image processing pipeline. Therefore, it has low par-
allelization efficiency and low cache efficiency.

We overcome this difficulty by image tiling strategy,
which is a major loop optimization technique for compilers.
Tiling strategy enables the x and y loops to be split to con-
tain loaded data in processing unit cache to improve cache
efficiency. Besides, by processing each tile in parallel, the
parallel ability is also improved. Note that, as the blue region
in Fig. 2 shows, it is required for supporting parallel pro-
cessing to care about additional 2r pixels for each tile in the
convolution step.

More importantly, the tiling strategy improves the perfor-
mance of range fitting. As Fig. 2 indicates, each subimage
tends to represent local texture such as flat or edge parts. In
natural images, a local region shows lower contrast, i.e., nar-
row intensity range. Specifically, IR = Imax − Imin for each
subimage is expected to be smaller than the full image. This
mechanism is matched to our SVD approach: narrower range
contributes to lower computation cost.

4. EXPERIMENTAL RESULTS

We evaluated the performance of our method for approxima-
tion accuracy and computational time. All the codes were
implemented in C++, developed on Visual Studio 2017 par-
allelized by OpenMP and vectorized by AVX. Approximate
accuracy is quantified as Peak Signal-to-Noise Ratio (PSNR)
between the ideal result (original BF) and filter output.

In the first experiment, we justified approximation ac-
curacy and computational performance of BF with Gaus-
sian range kernel. We compared the proposed method
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Fig. 3: Order w.r.t. PSNR on various methods (σs = 5).

EVD

SVD

CBF

FCBF

30

40

50

60

70

80

0
1 2 3 4 5 6 7 8

P
S

N
R

 [
d
B

]

Time [ms]

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8

P
S

N
R

 [
d
B

]

Time [ms]
σr = 20 σr = 40

Fig. 4: Computational time [ms] w.r.t. PSNR [dB] on various
methods (σs = 5).

with Compressive BF (CBF) [24], its acceleration method
called Fast Compressive BF (FCBF) [25] and the EVD-based
method [28]. Note that CBF and EVD do not share convo-
lutions of numerator/denominator; by contrast, FCBD and
SVD (ours) share convolutions of them. Figure 3 shows the
order of CBF/FCBF and EVD/SVD for the approximation
accuracy. Under the same order, CBF/EVD achieved higher
performance than the shared method. When K and σr are
small, which is a hard condition for approximating BF, the
shared methods FCBF/SVD outperforms the others. This is
because FCBF/SVD subtract edges from the source image,
but EVD/CBF add edges for blurred image. Resulting im-
ages for small σr are similar to source images in visibility.
Hence, the shared methods have superior performance in this
condition. Note that the relation of the order and the number
of convolutions is different for each method, such as CBF:
4K + 1, FCBF: 2K, EVD: 2K and SVD: K.

In order to consider the actual computational perfor-
mance, we replot the horizontal axis as computational time.
Figure 4 plots computational time for the PSNR. SVD (our
method) is faster with almost the same accuracy than FCBF.
Note that all the methods are parallelized and optimized by
4× 4 tiling strategy.

In the second experiment, we confirmed the effectiveness
of tiling strategy and range fitting. Figure 5 shows the re-
sults of SVD with/without tiling and with/without range fit-
ting. Note that tiling with range fitting (Tiling w/ RF) is the
same curve of SVD in Fig. 4. The tiling accelerates O(1) BF
significantly. Range fitting improves the performance for both
with/without tiling cases. Also, the tile-based range fitting
further improves performance. The precomputing overhead
for computing IR took only 0.03 [ms].
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Fig. 5: SVD of Computational time [ms] w.r.t. PSNR [dB]
with/without tiling and with/without range fitting (σs = 5).
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In the third experiment, we verified that our method was
able to approximate various range kernels. We tested hat ker-
nel (or the Bartlett window, triangular window), defined by

wr(a, b) := max(1− |a− b|
σ

, 0). (11)

The double exponential (or Laplace) distribution kernel is de-
fined by

wr(a, b) := e−
|a−b|
σ . (12)

Note that this is not Laplacian filtering for edge detection.
Both kernels are non-differentiable and, obviously, not Gaus-
sian. We compared the proposed method with the linear in-
terpolation approach [18] and EVD, which support arbitrary
range kernels. Figure 6 reveals performance in the cases of
the Bartlett window and the Laplace distribution kernel. The
proposed method outperformed both state-of-the-art methods.

5. CONCLUSION

This paper proposedO(1) BF designed via SVD that supports
arbitrary range kernel and reduces the number of convolutions
by half. Moreover, image tiling strategy and range fitting
improve the performance drastically. Our method showed
higher performance in both accuracy and computational time.
The proposed method achieves sufficient approximation ac-
curacy within 5 ms for arbitrary range kernel approximation
in 512 × 512 size image; thus, the frame rate of our method
is over 200 frame per second.
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