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ABSTRACT

Image filtering is fundamental in image processing. The accelera-
tion is essential since image resolution has highly increased. For
the acceleration, image subsampling is a general approach for any
filtering. However, this approach has a drawback in accuracy due
to image aliasing. Several papers moderate this problem by sub-
sampling image or filtering kernel non-sequential sampling. In this
paper, we improve the sampling combined with image and kernel
subsampling. We also accelerate the work of non-sequential sam-
pling by vector addressing of hardware acceleration. Experimental
results show that the proposed method accelerate bilateral filtering
and adaptive Gaussian filtering. Also, the proposed vector address-
ing accelerate both filters.

Index Terms— randomized algorithm, randomized subsam-
pling, edge-preserving filtering, vector addressing

1. INTRODUCTION

Filtering is fundamental tools for image processing. The filtering
usually hasO(Sr2) order, where S and r are image size and filtering
radius, respectively. There are several approaches to reduce the order
of filtering radius. Separable filtering reduces the order O(r2) into
O(r), and recursive filtering decrease it into O(1).

Image subsampling accelerates general image processing. The
subsampling reduces the order into O(log(Sr2)), and this method
accelerates any image processing. The approach has low accuracy
since subsampling loses high-frequency information. Only kernel
subsampling moderates the drawback [1]. Also, randomized sam-
pling suppresses signal aliasing. The filtering cost also depends on
image size; thus, this method is limited to high-resolution images.
Important image subsampling [2] performs filtering at notable parts
in images, i.e., edge and texture. The method reduces the number of
processing pixels. Then, the method interpolates other parts.

Hardware acceleration is also essential. Parallelization and
vectorization are effective in CPU implementation. Paralleliza-
tion is easily applied in image filtering, but vectorization depends
on the kind of filters. Usually, we sequentially store and access
images in memory. However, the approaches of [1] and [2] have
non-sequential accessing for memory; thus, its vectorization is not
trivial.

In this paper, we conjunction with the conventional approaches
of [1] and [2] to improve the acceleration performance in high-
resolution images. Also, the formulation is generated form bilateral
filtering to general FIR filtering. Moreover, we propose an effective
vectorization for these filtering with the non-sequential accessing.
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2. RELATED WORK

Finite impulse response (FIR) filtering is defined as follows:

Ī(p) =
1

η

∑
q∈N(p)

f(p, q)I(q), (1)

where I , Ī is an input image and an output image, respectively. p,
q is a target pixel and a reference pixel. f is a weight function. N
represents a set of reference pixels in the kernel. η is a normalization
term.

There are several techniques for accelerating the FIR filters. The
order of separable filtering is O(r). The kernel of the typical filters,
e.g., box, Gaussian, Laplacian, and Sobel, have separability; thus,
the approach accelerates filtering without approximation. For any
spatially invariant filtering, we can construct separable kernels [3]
through the singular value decomposition. For spatially invariant fil-
tering, recursive filtering reduces the computational order intoO(1).
Gaussian filtering and box filtering have optimized representations.
Box filtering is accelerated by summed area table [4, 5]. Gaussian
filtering are approximated by infinite impulse response (IIR) filter-
ing [6, 7], iterative box filtering [8], and sliding DCT approxima-
tion [9, 10].

Additional processing is required for spatially variant filtering,
such as adaptive parameter filtering and edge-preserving filtering.
Spatially variant filtering is decomposed into several spatially in-
variant filters. Otherwise, the filter is forcefully applied separable
filtering. For example, bilateral filtering is decomposed into multi-
ple Gaussian filtering. There several approaches for this accelera-
tion [11, 12, 13, 14, 15, 16]. These approximations accelerate the
filter for grayscale images but do not work well for color images
due to the curse of dimension. [17] moderates the problem, but the
proceeding speed is real-time performance. Forcefully separable fil-
tering [18, 19] does not have the curse of dimension. The order of
these approaches is O(r); thus, the acceleration is not suitable for
large filtering kernel.

3. ACCELERATION WITH NON-SEQUENTIAL
ACCESSING

3.1. Randomized Kernel Subsampling

Banterle et al. [1] subsample image kernels for accelerating bilat-
eral filtering. The generalized representation for FIR filtering can be
defined as follows:

Ī(p) =
1

η

|Rp|∑
n=1

f(p,Rp(n))I(Rp(n)), (2)

where R returns randomize reference pixels from N(p), and |R| is
the number of pixels to be referred. When |R| < N(p), the num-
ber of processing pixels in the kernel is reduced. Figure 1 shows
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Fig. 1: Overview of randomized kernel subsampling.

an overview of this filter. We prepare random matrices for random-
ized sampling, and then we apply the sampling at filtering. We use
Poisson-disk subsampling [20, 21] for kernel subsampling. Note that
the method only subsample filtering kernel and the image part is full
sample.

3.2. Importance Image Sampling

Lou et al.[2] convolve only important pixels. The method reduces the
computational cost from image size into the number of processing
pixels. The definition is shown in

Ī(p) = M(p)
1

η

∑
q∈N(p)

f(p, q)I(q), (3)

where M(p) = m ∈ {0, 1} represents an importance map, which
contains processing flags. If M(p) is 0, the processing of the pixel
is omitted.

The type of importance map depends on the type of image filter-
ing. For edge-preserving filtering, edge information is essential. We
use the textureness measure of Bae et al. [22] for this case. At first,
we extract high frequency signals.

Ih = |I −G ∗ I|, (4)

where G ∗ I represents a Gaussian convoluted image. | · | shows
the absolute function. Then, the high-pass image is also Gaussian
convoluted.

Īh = G ∗ Ih. (5)

In [22], joint bilateral filtering [23, 24] was used, but we use the
Gaussian convolution for acceleration. Next, we remap the map to
control the number of processing pixels.

M ′ = min(s · Īh, vmax), (6)

where s amplify the value; thus, the number of important pixels be-
comes large, when s is high. Notice that vmax prevents overflow,
e.g., vmax = 255 for 8-bit and vmax = 1.0 for floating number.
For control the number of processing pixels by percentage, we can
use the histogram of Īh instead of using the direct parameter of s.
Finally, we binarize the grayscale importance map by dithering. For
dithering, we use error diffusion of Floyd-Steinberg.

M = DFS(M ′) (7)

(a) Importance map (b) Resulting image

Fig. 2: Importance map and resulting image of subsampled bilateral
filtering. 55% pixels are processed.

where DFS shows the dithering function.
Figure 2 shows the importance map and the resulting image.

We can process almost edge and texture parts. Next, we interpo-
late the gap pixels in the image. Weighted filtering can interpolate
the value [25].

Ī =
L ∗ I ·M
L ∗M , (8)

where L is Laplacian smoothing convolution, and M is importance
map. The Laplacian kernel is exp(−|x|/σ). The filter is repre-
sented by IIR filtering; thus, this interpolation is fast. The previ-
ous work [22] used Gaussian convolution for this interpolation, but
Laplacian smoothing can perform more accelerate interpolation.

For non-edge-preserving filtering, such as parameter adaptive
filtering of adaptive Gaussian filtering, we use Poisson-disk subsam-
pling [20, 21] for importance map sampling. The approach is also
used in patch-based filtering [26]. Note that the method only sub-
samples filtering images and the kernel part is full sample.

4. PROPOSED METHOD

4.1. Kernel and Image Subsampling

In this paper, we jointly consider Eqs. (2) and (3) for acceleration.
The definition is as follows:

Ī(p) = M(p)
1

η

|Rp|∑
n=1

f(p,Rp(n))I(Rp(n)). (9)

After filtering, we interpolate the filtering by Eq. (8).
Note that the simple downsampling approach has similarities to

the proposed approach. Image processing is accelerated by process-
ing pipeline, i.e., subsampling, filtering, and then upsampling. The
pipeline decimates processing pixels in an image by a regular grid
and reference pixels in a kernel by a regular grid, too. Therefore, M
and R have grid patterns in Eq. (9). sub-up has ,however, relation-
ship between M and R. On the contrary, we can separate the image
and kernel sampling. This approach has grid sampling for image
sampling; thus, we can use typical image upsampling, e.g., linear
and cubic.

4.2. Vectorization

Image processing has five nested loops; x and y image loops, x and y
kernel loops, and color loops. For vectorization, we usually use loop
unrolling for the loops and then we vectorize the unrolled processes.
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Fig. 3: Generating index map for image subsampling.
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Fig. 4: Generating index maps of kernel subsampling.

Image-loop unrolling is usually better computational performance
than the kernel-loop and color-loop one [27]. We can always vec-
torize the color-loop when a processing image has color channels.
The unrolling has, however, low parallelization efficiency. Since the
number of channels is 3, but the width of SIMD channels is 4, 8 or
16.

The proposed method and the conventional methods [1, 2] have
non-sequential accesses in filtering. The vectorization usually re-
quires sequential accessing. In the image subsampling [2], the
kernel-loop access is sequential, but the image-loop access is not
sequential. In the kernel subsampling [1] and the proposed method,
both kernel-loop and image-loop accesses are not sequential. For
non-sequential accessing, we can use set intrinsic, which is scaler
loading. The operation is remarkably slower than the sequential
load.

The problem of the non-sequential accessing is solved by vector
addressing [28], such as gather and scatter. The vector address-
ing realizes vector loading and storing for non-sequential data. Cur-
rently, we can use the loading operation of gather from the 5-th gen-
eration of Intel Core i CPU. Also, we can use the storing operation
of scatter from the 7-th generation of Intel Core i CPU, which is,
however, limited in high-end CPU or Xeon. The operations require
a head pointer of I/O memory and an index array, which contains
relative address from the head for accessing pixel. The intrinsics are
as follows;

• mm256 i32gather ps(float* src, m256i index, 4)

• mm256 i32scatter ps(float* dst, m256i index, 4)

src and dst are head pointers of the source and destination buffers.
index is a partial index array loaded to the SIMD register. The last
augment is sizeof(float). We can vectorize arbitrary loop with the
vector addressing.

4.2.1. non-sequential sampling for image subsampling

In image subsampling, the kernel-loop is natively sequential; thus,
we can use sequential loading for this loop. The width of the kernel-
loop is not multiples of the SIMD width, i.e., 4, 8, or 16, since the
kernel width is usually an odd number. We usually take scaler pro-
cessing for exception handling of the remainder loop. With the vec-
tor addressing, however, we can vectorize the peel loop.

The image-loop is not sequential in image subsampling. For this
case, we generate an index map for image loop. Figure 3 shows the
generation of the index map. The index map is generated from the
importance map of Eq. (6). Gathering with the index map, we can
unroll image-loop for vectorization.

4.2.2. non-sequential sampling for kernel sampling

In kernel subsampling, the kernel-loop is not sequential. We can
take a similar approach of the image-loop in image subsampling for
this case. First, we generate multiple index maps for kernel loops,
since we should switch the random accessing patterns. Then, we
randomly select the pattern and then gather with the index map for
the unrolling kernel-loop. Figure 4 shows the generation of the index
maps.

For the image-loop vectorization, the process needs an addi-
tional step. The index patterns are stored for kernel sampling, but
we should switch the pattern per pixel along image-loop. Thus, we
select the number of SIMD width patterns, i.e., eight patterns, and
then we gather the first set of elements in the set of the patterns.
Finally, we also gather from the second to the final elements in the
patterns.

4.2.3. non-sequential sampling for proposed method

In image-and-kernel subsampling, the kernel-loop vectorization has
the same process as the kernel subsampling. In the image-loop un-
rolling, we obtain the relative addresses for reference pixels by the
same process as the kernel subsampling. In this process, the center
pixels are not sequential; thus, we gather the address of the pixel by
the same process as the image subsampling. Combined with both
addressing, the proposed method is well vectorized.

4.2.4. scatter intrinsic for image sampling

When an image is non-structurally subsampled, data storing is also
non-sequential. The scatter intrinsic is adequate for this case. How-
ever, the scatter is not supported by the most CPU; thus, we should
use scalar accessing in unsupported CPUs.

5. EXPERIMENTAL RESULTS

We compared the vectorization method of the kernel-loop to that
of image-loop for non-sequential addressing in image filtering.
Then, we compared the proposed method to the image subsampling
method [2] and kernel subsampling method [1] by the trade-off be-
tween computational performance and approximation accuracy. For
the accuracy metric, we utilized peak signal to noise ratio (PSNR).
We accelerated two types of filters; one is bilateral filtering [29],
another is adaptive Gaussian filtering [30]. The bilateral weight is
as follows:

f(p, q) := exp(
‖p− q‖22
−2σ2

s

) exp(
‖I(p)− I(q)‖22

−2σ2
r

), (10)

where ‖·‖2 is the L2 norm, and σr and σs are standard deviations for
range and spatial distributions, respectively. The weight of adaptive
Gaussian filtering is as follows:

f(p, q) := exp(
‖p− q‖22
−2σs(p)2

), (11)
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Table 1: Image subsampling: Ratio of computational time between
kernel and image loop vectorization (image / kernel) w.r.t. sampling
ratio of image subsampling.

sampling ratio 0.1 0.2 0.3 0.4 0.5
bilateral 1.10 1.14 1.18 1.18 1.19

adaptive Gaussian 1.37 1.50 1.56 1.57 1.59
Table 2: Kernel subsampling: Ratio of computational time between
kernel and image loop vectorization (image / kernel) w.r.t. sampling
ratio of kernel subsampling.

sampling ratio 0.1 0.2 0.3 0.4 0.5
bilateral 1.65 1.47 1.41 1.30 1.25

adaptive Gaussian 1.64 0.98 0.86 0.81 0.77
Table 3: Image and kernel subsampling: Ratio of computational
time between panel and image loop vectorization (image / kernel)
w.r.t. sampling ratio of kernel and image subsampling; Up: bilateral
filter, Down: adaptive Gaussian filter.

kernel/image 0.1 0.2 0.3 0.4 0.5
0.1 1.95 2.79 3.31 3.60 3.94

2.11 2.72 3.14 3.45 3.65
0.2 1.90 2.56 2.99 3.17 3.33

1.94 2.43 2.68 2.80 3.00
0.3 1.82 2.31 2.65 2.82 2.91

1.80 2.23 2.45 2.58 2.69
0.4 1.74 2.14 2.36 2.50 2.56

1.70 2.03 2.18 2.26 2.34
0.5 1.66 1.98 2.19 2.29 2.35

1.59 1.82 1.91 1.98 2.01

where σs(p) is a pixel-dependent parameter found in a parameter
map. For example, we change the parameter of the Gaussian distri-
bution using a depth map [31, 32] as the parameter map for refocus-
ing. σs(p) is defined as:

σs(p) = σs + α‖d−D(p)‖1, (12)

where D is the depth map, d is the focusing depth value, and α is a
parameter of the range of the depth of field.

The code was written in C++ vectorized with AVX/AVX2,
but for scatter intrinsic, we use 256-bit addressing supported from
AVX512. OpenMP also parallelized the code. The used computer
was Intel Core i9 7980XE, which is Skylake-X microarchitecture.
The compiler was Visual Studio 2017. The computation of the
weight functions are accelerated by considering subnormal num-
bers [33]. The size of the test image was the 2264 × 1512 color
image for bilateral filtering and the 896 × 744 RGB-D image for
adaptive Gaussian filtering. The kernel radius was r = 24 for the
parameter of filtering.

Tables 1 to 3 show the ratio of the computational time of
the kernel-loop and image-loop vectorization to the sampling ratio
of image and kernel subsampling. In the image subsampling, the
kernel-loop vectorization has faster performance. The kernel-loop
vectorization is also faster in the kernel subsampling for bilateral
filtering. On the contrary, the kernel-loop vectorization is faster
for adaptive Gaussian filtering, since the filter requires a pixel-
dependent parameter map and the result has low computational cost.
In the proposed method, however, the image-loop vectorization is
fast.

Fig. 5: Bilateral filtering: Trade-off between computational time and
PSNR. PS indicates positional sampling ratio and KS indicates ker-
nel sampling ratio.

Fig. 6: Adaptive Gaussian filtering: Trade-off between computa-
tional time and PSNR. PS indicates positional sampling ratio and
KS indicates kernel sampling ratio.

Figures 5 and 6 show the trade-off between the computational
performance and the PSNR accuracy in the bilateral filtering and
adaptive Gaussian filtering, respectively. The proposed method ex-
tracts high performance with less cost. For bilateral filtering, we can
subsample the kernel samples more massive than the image samples.
By contrast, we can subsample image samples more extensive than
the kernel samples for adaptive Gaussian filtering. The fact shows
that image subsampling is suitable when the filter has smooth con-
volution weights.

6. CONCLUSION

In this paper, we proposed an acceleration technique for image filter-
ing by kernel and image subsampling. Also, we proposed a hardware
acceleration technique by vector addressing of gather, scatter for the
proposed method and also the conventional methods. Experimental
results show that the proposed method more accelerate filters, such
as bilateral filtering and adaptive Gaussian filtering, than the conven-
tional method. Moreover, appropriate vector addressing is verified
for the proposed and conventional methods.
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