
Parallelized and Vectorized Implementation
of DCT denoising with FMA instructions

Yuki Kawasaki, Yoshihiro Maeda, and Norishige Fukushima∗
Nagoya Institute of Technology, Japan

Email: ∗fukushima@nitech.ac.jp

Abstract—DCT denoising is a denoising technique, which
filtering an image in the frequency domain. The DCT denoising is
known as an excellent method in a balance between processing
time and denoising accuracy. In this paper, we implement the
DCT denoising for further improving the computational cost to
use efficient implementation of DCT, named AAN (Arai-Agui-
Nakajima’s methods). Also, we utilize FMA (fused multiply-add)
instructions for the AAN-based DCT for accelerations. In the
experiments, we compare the proposed DCT algorithm with DCT
denoising based on Chen’s algorithm, which is a normal fast
DCT algorithm. The experimental results show that the proposed
method is superior to the conventional method.
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I. INTRODUCTION

Denoising is an essential process in image processing, and
there are enormous researches on this topics. The denoising
methods are roughly classified into a filtering in a spatial
domain and a frequency domain.

Represent methods in the spatial domain filtering are bi-
lateral filtering [1], non-local means filtering [2], and guided
image filtering [3]. These filters are FIR convolution filters,
and these computational costs depend on filtering kernel size.
Therefore, there are several acceleration algorithms in bilateral
filtering [4], [5], [6], [7], [8], [9], [10], [11], [12], non-local
means filtering [13], [11], and guided image filtering [14],
[15]. Each acceleration is aimed at approximating brute-force
implementation; hence denoising performance tends to be
reduced. Furthermore, frequency domain filters have superior
denoising performance to the spatial domain filtering.

Represent methods in frequency domain filtering are
wavelet shrinkage [16], [17], BM3D [18], and DCT de-
noising [19]. The wavelet shrinkage denoising is an early
method, which utilizes partial frequency domain transform.
Partial frequency transforms extract more detail features in
an image than transforming whole image signals. Denoising
with Bayesian least squares based on Gaussian scale mixture
(BLS-GSM) [17] is an early method, which utilizes redundant
frequency transform. BM3D is the state-of-the-art method
in denoising performance, which use redundant frequency
transform with 3D signals; however, its computational cost is
high. DCT denoising is a simplified method of the BM3D
and is an excellent method of balancing calculation speed
and performance. Therefore the DCT denoising is utilized
in FFMPEG, which is de-facto standard video processing
software.

In this paper, we propose an accelerated method for the DCT
denoising to improve the computational performance further.
Randomized redundant DCT denoising algorithm accelerate
DCT denoising by subsampling the number of DCT patches,
but the proposed method does not use subsampling, thence the
proposed method keep accuracy from the brute-force imple-
mentation. We utilize a fast implementation of DCT, named
AAN [20], which is used for DCT conversion in the JPEG
image compression algorithm. Furthermore, we accelerate the
AAN with the FMA intrinsic, which is vector operation of
simultaneous multiplication and addition.

II. DCT DENOISING

In DCT denoising, an image is delimited by redundant
blocks, and the blocked patches are denoised. A block is
transformed into a frequency domain by using DCT, and then
small DCT coefficients in the patch are thresholded. Next, the
patch is inversely transformed. We iterate these processes for
the whole patch. Finally, the overlapped pixels in patches are
averaged to compose the entire image.

Figure 1 shows the detail processing flow of DCT denoising.
P represents a set of patches that be converted by DCT. First,
we convert the i-th patch fi in P to the frequency domain by
DCT.

Fi = SDCT (fi), (1)

where Fi represents DCT coefficients of the patch fi, and
SDCT (·) represents a DCT function. Next, when absolute
values of the DCT coefficients are smaller than a threshold
value, the coefficients are regarded as noisy signals, and then
are replaced with 0, which is called hard thresholding. The
process is as follow;

F ′
i (u, v) =


Fi(u, v) u = v = 0

Fi(u, v) |Fi(u, v)| > th

0 otherwise,

(2)

where F ′
i is coefficients after thresholding and th is the

threshold. Note that the DC component should be held; thus
thresholding is not performed for DC. Finally, F ′

i is inversely
transformed into the spatial domain by IDCT (Inverse DCT).

f ′
i = SIDCT (F ′

i ), (3)

where f ′
i represents the denoised patch, and SIDCT (·) repre-

sents the IDCT function. This process is done for all patches
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Fig. 1: Algorithm of DCT denoising.

in P . Finally, it outputs by averaging pixels with overlapping
patches.

Jp =
∑
i∈ωp

f ′
i(qp), (4)

where ωp is a patch set, which include the pixel p, and qp
indicates that a coordinate of the i-th patch qi = s, t = p. The
patches are averaged in the same weight; thus this per patch
operations can be merged into whole image processing.

J = 1/N
∑
i∈Ω

f ′
i , (5)

where N is the size of the patch, e.g., in the 8×8 case, N=64.

III. FAST DCT BY AAN

Fast implementation of DCT, named AAN, will be described
here. For simple calculation of 8-point DCT, this conversion
requires multiplying a vector, which has 8 elements, by a
transformation matrix of 8 × 8. In this case, the required
calculation is 64 multiplications and 56 additions. The 2D case
has 512 multiplications and 448 additions.

In Chen’s algorithm, which is a basic butterfly computation
for DCT, 1D DCT requires 18 multiplications and 28 addi-
tions. Also, 2D DCT requires 288 multiplications and 448
additions.

On the other hand, AAN [20] can perform 8-points
DCT calculation, 5 multiplications and 29 additions, and 8
multiplications for scaling. Figure 2 shows the diagram of
AAN. In this figure, it is shown that the sum of squares
at the intersection points and the product of the coefficients
in the squares are obtained. Also, a black triangle indicates
sign inversion. Note that 2D DCT with AAN, such as 8 × 8
DCT, requires two times scaling, but this scaling can be
merged and simultaneously performed at once. Therefore, the
number of calculations of 8 × 8 DCT in this implementation
has 144 multiplications, which includes 64 scaling and 80
multiplications, and 464 additions. IDCT can be realized by
calculating the diagram from the inverse, and the number of
calculations is the same as in the case of DCT. In IDCT,
scaling is done before butterfly computation.
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Fig. 2: Diagram of AAN.
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Fig. 3: Forward DCT of AAN with FMA instructions.

IV. PROPOSED METHODS

A. AAN for DCT denoising

In the AAN butterfly, scaling processing comes after the
final step of the DCT computation or comes before the first
one of the IDCT butterfly. By performing the thresholding and
the scaling collectively before and after the DCT butterfly,
the number of calculations can be reduced. More specifically,
when thresholding and scaling are performed only for coef-
ficients whose absolute value exceeds the threshold t(u, v).
The threshold t(u, v) is obtained by AAN scaling factor by
dividing the threshold th. The proposed DCT process is as
follows;

F ′
i (u, v) =


Fi(u, v)×M(u, v) u = v = 0

Fi(u, v)×M(u, v) |Fi(u, v)| > t(u, v)

0 otherwise,

(6)

M(u, v) = (mu ×mv)× (mu ×mv) (7)

t(u, v) =
th

mu ×mv
(8)

where mu,mv are the scaling values of one-dimensional DCT
in each of the vertical and horizontal directions, and M(u, v) is
the scaling value of the two-dimensional DCT. Figure 5 shows
the flow of the conventional DCT denoising and the proposed
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Fig. 4: Inverse DCT of AAN with FMA instructions.
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Fig. 5: AAN for DCT denoising.

one. Merging the dual scaling and thresholding processes,
the number of multiplications is reduced. Note that when the
coefficient is replaced with 0, the number of multiplications
is further reduced by not performing scaling.

B. DCT denoising with FMA instructions

The FMA can compute (A×B) + C with one operation.
In the fig. 3 shows AAN with FMA, where enclosed region

indicates multiplication and addition are combined by FMA.
In the inverse DCT case, more FMA operations are used,

since the scaling in the first command of IDCT can be
integrated. Therefore, Eight times of integration required for
scaling can be reduced to 4 times by using FMA instructions.
In the fig. 4, a dotted line indicate the area where the number
of instructions can be reduced with the FMA instruction in
AAN IDCT. In this figure, it is shown that the sum of squares
at the intersection points and the product of the coefficients in
the squares are obtained. Also, a black triangle indicates sign
inversion.

The number of operations for the computation of patches
of 8× 8 is 136 times when using Chen’s algorithm, and 124
times using the proposed method.

V. EXPERIMENTAL RESULTS

In the experiments, we compared our implementation with
the conventional implementation. We used an image whose
size was 512×512 pixels as an input image. We compared the
AAN based-DCT denoising with Chen’s algorithm-based one.
We also contrasted the methods implemented with/without the

Fig. 6: Result image of DCT denoising.

TABLE I: Computational time (C++).

Chen AAN
time [msec] 924.41 865.61

TABLE II: Computational time (parallelized and vectorized).

Chen AAN Chen - FMA AAN - FMA
time [msec] 23.12 22.64 19.61 16.57

FMA instruction for each method. In this experiment, we used
Core i7-6700K 4.0 GHz (4 cores 8 threads) with Visual Studio
2015 C++ compiler.

TABLE I shows the processing time of each method,
and TABLE II shows the processing time of each method
with vectorization and parallelization. ”- FMA” in the table
indicates that the implementations utilize the FMA. The result
shows that our method is faster than the conventional method
in each case.

Figure 6 shows the example of denoising results. The result
image indicates both conventional and proposed images since
the proposed method has the almost same quality of the brute-
force implementation expecting for floating value computation
error.

Table III shows denoising result of fast denoising methods.
The proposed method has the best denoising performance.
Figure 7 shows computational time of each denoising method
with the same parameter setting in Table III. The proposed
method is the second best method. The DCT denoising has
also implemented in OpenCV library, but the proposed method
quite faster than this implementation. In Table IV, PSNR and
SSIM of each denoising method for 24 color images have been
provided by Kodak corporation. The proposed method has the
best denoising performance.

VI. CONCLUSION

In this paper, we proposed an acceleration implementation
of DCT denoising by using the AAN DCT and FMA opera-
tion. Experimental results showed that the proposed implemen-
tation improved the computational speed of the DCT denoising
without loss of accuracy. Also, the fast implementation of the
DCT denoising was 13.33 ms for 512 × 512 images, which
was enough performance for 60 fps video.

The acceleration of DCT operation could further apply DCT
based denoising, e.g., BM3D, two-step DCT denoising, these
examples also could be improved.
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TABLE III: PSNR of each denoising method. BF is bilateral
filtering, NLM is non-local means.

BF NLM proposed
PSNR [db] 31.90 30.12 32.12
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Fig. 7: Computational time of each denoising method. Image
size is 512× 512.
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