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ABSTRACT
In this paper, we propose an extension of guided image filter-
ing to support arbitrary window functions. The guided image
filtering is a fast edge-preserving filter based on a local linear-
ity assumption. The filter supports not only image smooth-
ing but also edge enhancement and image interpolation. The
guided image filter assumes that an input image is a local lin-
ear transformation of a guidance image, and the assumption
is supported in a local finite region. For realizing the suppo-
sition, the guided image filtering consists of a stack of box
filtering. The limitation of the guided image filtering is flex-
ibilities of kernel shape setting. Therefore, we generalize the
formulation of the guide image filter by using the idea of win-
dow functions in image signal processing to represent arbi-
trary kernel shapes. Also, we reveal the relationship between
the guided image filtering and the variants of this filter.

Index Terms— guided image filter, arbitrary windowed
guided image filter, edge-preserving filter, linear regression,
window function

1. INTRODUCTION

Guided image filtering [1] is an edge-preserving filter based
on a local linearity assumption. The filtering can smooth im-
ages at a constant time with respect to kernel radii, and the
response of the filtering result is sharper than bilateral fil-
tering [2]. Also, the guided image filtering can utilize an
additional image as guidance signals for defining smoothing
weights similar to joint bilateral filtering [3, 4]. These prop-
erties make the guided image filtering applicable for various
applications, such as high dynamic range imaging [5], texture
transferring [6], haze removing [7], texture suppression [8],
stereo matching, optical flow estimation [9], depth map re-
finement [10], free viewpoint view synthesis [11], and so on.

The guided image filter assumes that an output image is a
local linear transformation of a guidance image, and also the
assumption is supported in a local finite region. The guided
image filter consists of a stack of box filtering to realize the
supposition. The controllable parameters for the guided im-
age filter are radii of box filtering and Lagrangian of local
linear regression. The bilateral filtering, on the contrary, ad-
justs one more parameter, which are kernel radii, Gaussian
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range distribution, and spatial one. The spatial distribution of
filtering is not adjustable in the guided image filter.

In this paper, we propose an extension of the guided image
filtering to support flexible window functions. We named this
filter arbitrary windowed guided image filtering (AWGIF).
We prove the guided image filtering can be derived from the
weighted local linear regression, and the weight functions can
be arbitrarily defined. With this generalization, the spatial dis-
tribution becomes more flexible, and further, the filtering re-
sponse becomes more controllable. Besides, we apply infinite
impulse response (IIR) filtering or recursive finite impulse re-
sponse (FIR) filtering for construction of the proposed guided
image filter to keep constant time feature.

2. RELATED WORKS

These are three types of extensions for the guided image fil-
tering; the first one is an extension of support regions, the
second one is a parameter adaptation extension for halo, and
the third is an extension of acceleration of multidimensional
signals. The category of the proposed method is the first one.
Extension of support region: The guided image filter as-
sumes that an output image is a linear transform of a guid-
ance image, and the filtering coefficients are gathered by us-
ing square windows, i.e., box filtering. Complex texture re-
gions, however, violate this assumption. The cross-based lo-
cal multipoint filtering [12] avoids the problem by using a box
filtering with distorted support windows, which is realized by
cross based filtering [13]. The cross based filter changes the
filtering domain of box filtering according to the difference
between current and neighboring pixel intensities and then
perform adjustable filters separably for 2D images. The mul-
tipoint local polynomial approximation [14] feather improves
the performance. The fully connected guided image filter-
ing [15] employs tree filtering [16] for covering the whole re-
gion without filtering across edges. These filters are adaptive
filtering in the spatial domain. Instead, the proposed method
is weight adaptive. If we use binary weighting, the proposed
method becomes these domain adaptive methods.
Extension of parameter adaptation for halo: The guided
image filter has halos at large image gaps. The weighted
guided image filtering [17] spatially adopts the parameter of
ridge regression for reducing halos. Also, gradient domain
guided image filtering [18] suppress halo by filtering in the
gradient domain.
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Extension of acceleration of multidimensional signals: The
guided image filter for color or high dimensional signals re-
quires high computational costs. The guided image filter for
high dimensional signals, such as hyperspectral image filter-
ing and non-local means filtering [19], is accelerated by the
principal component analysis [20, 21]. Hardware-efficient
guided image filtering [22] also reduces the computation time
by changing inversing matrix operations in guided image fil-
tering into a suitable representation for hardware.

3. REVISITING GUIDED IMAGE FILTERING

We review the guided image filtering by the style that is easy
to introduce the proposed extension. The guided image filter
linearly transforms a patch in a guidance or filtering image
and then averages the transformed patches. Let output signals
q be input signals p with noise or texture signals t;

qi = pi + ti, (1)

where i is a pixel position in a patch. In a square patch ωk,
whose center of the pixel position is k, the whole pixel in ωk
are linearly transformed form guidance signals I . The output
pixels in the patch, q′, are defined as follows;

q′i = akIi + bk, ∀i ∈ ωk, (2)

where ak and bk are coefficients for linear transformation. We
solve these coefficients by using the linear ridge regression.

arg min
ak,bk

=
∑
i∈ωk

((akIi + bk − pi)2 + εa2
k), (3)

where ε is a parameter of Lagrangian, which represents
smoothness of the guided image filtering. As a result,

ak =
covk(I, p)

vark(I) + ε
, (4)

bk = p̄k − ak Īk, (5)

where ·̄, var, and cov are mean, variance, and covariance of a
patch at the position of a center pixel k, respectively.

The coefficients ak, bk are solved per patch windows;
thus, the resulting patches are overlapping on the output
image. The patch processing is similar to patch-based fre-
quency transformations, such as BM3D [23] and DCT denois-
ing [24, 25]. These patch-based filters average overlapping
pixels for redundant treatment. For the case of the guided
image filtering, we also average the overlapping regions.

Variables in the patches are only coefficients a, b in the
averaging process; thus, we can utilize a simple mean filter
instead of using the patch averaging process.

qi =
1

|ω|
∑
k|i∈ωk

(akIi + bk) (6)

= āiIi + b̄i,

where
∑
k|i∈ωk

indicates that a combination of a pixel posi-
tion i in a patch k are fully averaged, and |ω| is the number of
pixels in a patch.

The guided image filtering utilizes a recursive representa-
tion of simple moving average [26] for mean, variance, and
covariance computation; hence, the computational time is in-
dependent of filtering kernel radii.

4. PROPOSED DEFINITION

The idea of the conventional guided image filter is based on
patch-based filters. For extending the guided image filter, we
consider patches as a rectangle window function in the con-
text of signal processing societies. In this paper, the window
function supports whole image domain, but instead, we as-
sume that linear transform assumption is gradually or weight-
ily kept. For this representation, the assumption of Eq. (2) is
solved by weighted local linear regressions.

arg min
ak,bk

=
∑
i∈Ω

wi,k((akIi + bk − pi)2 + εa2
k), (7)

where wi,k is a weight between pixels i and k. Ω is the whole
image region. Solving this equation, the coefficients ak and
bk become as follows;

ak =
ˆcovk(I, p)

v̂ark(I) + ε
, (8)

bk = p̂k − ak Îk, (9)

where x̂ is a weighted average function;

x̂k =

∑
i∈Ω wk,ixi∑
i∈Ω wk,i

. (10)

v̂ar, ˆcov are weighted variance and covariance functions by
using the weighted averaging instead of simple moving aver-
aging in the process of variance and covariance computation.

For this weighting, we can select arbitrary functions, such
as Gaussian distributionwi,k = exp(−‖i−k‖

2

2σ2 ) and Laplacian
distribution wi,k = exp(− |i−k|σ ), which are Gaussian filter
and double exponential smoothing. Note that when we use bi-
nary weighting function, such as box filtering and cross-based
filtering, the representation seems domain adaptive filtering.
Besides, the weight function does not limit using linear time-
invariant (LTI) filters, i.e., box and Gaussian filters, but also
supports spatially variant filters, which include the bilateral
filter. In an extreme case, the conventional guided image fil-
ter is also the spatially variant filter; thus, we can recursively
utilize the guided image filter for this weight computation.

For the selection of the weight, the aspect of the compu-
tational cost is essential, since filtering domain is the whole
image. If the Eq. (10) can be computed in constant-time, the
extended guided image filter also has constant time proper-
ties. In LTI filter cases, IIR or recursive representations are
efficient. The first order IIR filtering expresses the double
exponential smoothing, and IIR Gaussian [27] and recursive
representation of FIR Gaussian approximate Gaussian filter-
ing [28]. For edge-preserving filtering case, there are several
accelerations of the bilateral filter [5, 29, 30, 31]. Bilateral
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Fig. 1: Visualizing kernels of AWGIF with LTI filters.
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Fig. 2: 1D plots of spacial kernels of various LTI filters. σ =
3 for exp. based distribution, r = 4.5 for box filtering.

filtering has a similar feature of the cross-based filtering [13]
and tree filtering [16], these are a component of the local mul-
tipoint filtering [12] and the fully connected guided image fil-
tering [15], respectively. The cross-based and tree filtering are
domain adaptive, i.e., binary weight adaptive filtering; thus,
these filter is also represented by our extension. Furthermore,
cross-based filtering is O(r), and tree filtering is more com-
plex, hence, other fast edge-preserving filters are suitable for
real-time applications.

The number of coefficient maps is double of the number
of pixels. Naı̈ve computation requires tremendous cost, but
we can utilize the same approach in the conventional guided
image filtering. The variable is only coefficients; thence, we
can convolute coefficients instead of averaging all coefficient
maps. Note that we can use the other weighted filters used in
coefficient estimation in the averaging process, but we use the
same weighted filter in convince.

qi =

∑
k∈Ω wi,k(akIi + bk)∑

k∈Ω wi,k
(11)

= âiIi + b̂i.

For changing the filtering properties more, swapping this post
smoothing filter is also important. This is our future work.

5. EXPERIMENTAL RESULTS

Figures 1, 2 show the kernels of the adaptive windowed
guided image filtering (AWGIF) with LTI filters, which are
box filtering (box), Gaussian filtering (Gauss), and dual ex-
ponential smoothing (d-exp). We focus the flat region in
Fig. 1, where near the hat in Lenna image. On this region, the
conventional guided image filtering becomes twice-iterated

Table 1: Denoising (PSNR [dB]) with various LTI filters. Pa-
rameters of each filter are optimized to obtain the best PSNR.

noise σ box d-exp Gauss
5 37.68 37.31 37.76

10 33.31 33.26 33.40
15 31.50 31.14 31.72

box filtering. When the kernel radius of box filtering is r, the
filtering response is the tent or triangle filtering, whose radius
is 2r (See Fig. 2.). The tent filter has Manhattan distance in
2D space; thus, the filter is isotropic. In the case of Gaussian
convolution, the response becomes dual iterated Gaussian
filtering; hence, the filter’s distribution becomes

√
2σ. Note

that Gaussian filtering is isotropic filtering. The distance in
2D space of the d-exp kernel is Ln(n < 1) norm; thence,
the kernel shape becomes sharper than the above filters. Be-
sides, the filter has longer tails than the others. Focusing the
edge region, where the shoulder part, each filter has edge-
preserving properties. We should switch the filters in each
application owing to the characteristics of these filters.

For denoising applications, Tab. 1 shows denoising results
by AWGIF with various LTI filters. The results show that the
guided image filtering based on Gaussian filtering has the best
performance. Gaussian distribution has more power near the
center pixel and is isotropic filtering. Therefore, the char-
acteristics are suitable for denoising. The dual exponential
smoothing is the farthest from the suitable property. Note that
the guided image filter is not specialized for denoising. If
the users need better denoising, BM3D [23] and DCT denois-
ing [24, 25] is recommended.

For detail enhancement applications, suppression of halos
is essential. We use iterative filtering of guided image filtering
for a base signal generation, and detail signals are the subtrac-
tion of the base signal from an input signal. Figure 3 shows
detail enhancement results. In the iterative guided image fil-
tering, halos are inevitable, but the dual exponential filter can
weaken the hales in synthetic and real images. Applying the
proposed strategy to the weighted guided image filtering [17]
and the gradient domain guided image filtering [18] would
reduce more halos.

Figure 4 shows the dehazing results [7]. Transition re-
gions between hazy and non-hazy regions have white halos
on these results. The halo is caused by the fact that the total
of the weight in the kernel of edge-preserving filtering is just
one. Therefore we should distribute high contrast values to
low contrast regions where should be quite larger than halo’s
region for reducing white halos without the changing image
contrast. For this character, box filtering is suitable, because
the kernel has large power at far from the center point. More
suitable kernel shape is box-like kernel shape after dually iter-
ated filtering. Note that iterated box filtering is the tent kernel,
not box kernel.

Figure 5 shows the filtering result of non-local linear char-
acteristic regions. In complexly and binary changing region,
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Fig. 3: Detail enhancement. The top and bottom are synthetic and real image results, respectively. The profile line is along the
horizontal red line with clipping the region in the green rectangle, where indicates the base image. The orange circles in the
profile signals indicate notable halos. The dual exponential kernel mostly weakens the halo, and box kernel has the largest halo.
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Fig. 4: Dehazing result [7]. Box based AWGIF, which is the
conventional approach, has the best performance.

such as embedded text regions, naı̈ve guided image filtering
violates the assumption of local linear transformation. Local-
multipoint filtering [12] deals well such regions by using fil-
tering domain adaptation. Our strategy of AWGIF achieves
similar effects by using edge-preserving filtering in weighted
averaging in Eq. (10). We used compressive bilateral fil-
tering with joint way [31], which is O(1). Therefore, the
computational time of the proposed representation with edge-
preserving filtering is faster than the cross-based method. Fur-
thermore, bilateral filtering based filtering has more continu-
ous kernel shape than the cross-based one.

Table 2 shows the computational cost of AWGIF with var-
ious LTI filters on various size images. All filters are vector-
ized by AVX with single thread implementation on Intel Core
i7 6700K 4 GHz and compiled by Visual Studio 2015. We
used fast implementation of box [32] and Gaussian [33] fil-
ters, and also optimized codes for dual exponential smooth-
ing. For Gaussian filtering, we used the DCT-5 based sliding
O(1) implementation. Box filtering is the fastest and Gaus-
sian filtering is the second best. The d-exp smoothing is the
IIR based O(1) implementation, which requires much time

Gauss

Box D-EXP

Bilateral

Fig. 5: Violation cases of local linearity assumption. ε = 0.3,
r = 5. (only bilateral case, σr = 30). LTI based filters are
weak in this region, but the bilateral based filter works well.

Table 2: Computational time [ms] of AWGIF with LTI filters.
size box d-exp Gauss

512 × 512 4.68 6.72 6.23
1024 × 1024 22.58 41.74 29.14
2048 × 2048 88.65 198.72 118.78

of image scanning; hence, this filter is slower than the oth-
ers. For more acceleration, parallelization of guided image
filtering is effective. The implementation is available from
our website1.

6. CONCLUSION
In this paper, we generalize the guided image filtering to have
arbitrary window shape. The proposed representation is de-
rived by using the weighted linear regression. With this repre-
sentation, we can use any weighted averaging filtering, such
as Gaussian Laplacian, bilateral filtering, and even including
guided image filtering itself. Each filter should be switched
for each application. The better filters for applications, which
are detail enhancement, denoising, haze remove, and text fil-
tering, are reported in experimental results.

1http://fukushima.web.nitech.ac.jp/research/awgif/
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