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Abstract—In this paper, we propose an acceleration of guided
image filtering, which is one of the fastest edge-preserving
filters. The proposed method converts RGB signals into a color
space introduced by the principal component analysis. Then,
the filtering signals are sub-sampled or approximated by simple
box filtering in the biased color space. The experimental results
show that the proposed method is superior to the conventional
acceleration method in accuracy and computational time.

Index Terms—guided image filtering, acceleration, principal
component analysis, edge-preserving filtering

I. INTRODUCTION

Edge-preserving filtering is essential tools in image process-
ing and computer vision fields. The smoothing is a technology
that realizes smoothing signals with keeping an outline of
the input signals. For this characteristic, the edge-preserving
filtering is utilized for various applications, such as HDR [1],
haze remove [2], detail enhancement [3], stereo matching [4],
[5], depth map filtering [6], optical flow [7], and so on.

The edge-preserving filtering is classified in term of the
computational complexity and filtering attribute; Finite im-
pulse response (FIR) filters, such as bilateral filtering [8]
and non-local means filtering [9], are directly convoluting
images. Frequency domain filtering, such as BM3D [10], DCT
denoising [11], [12], and wavelet shrinkage [13], filters signals
in the frequency domain and usually utilize redundant basis
sets. Infinite impulse response (IIR) filtering, such as domain
transform filtering [14], recursive bilateral filtering [15], IIR-
based bilateral filtering [16], utilizes recursive filtering for
efficient computation. Guided image filtering [17] and its
variants [18], [19], [20], [21] utilize local linearity model.

One of the main issues in the edge-preserving filtering is its
high computational cost. Accordingly, numerous acceleration
methods are proposed in the various edge-preserving filter-
ing [22], [23], [24], [25]. However, there is much demand for
acceleration even now.

We focus on the guided image filtering, whose computa-
tional cost is constant per an image pixel. The fast guided
filtering [26] is further accelerates the filter by sub-sampling
input images. This acceleration significantly reduces compu-
tational cost, on the contrary, edge signals in input images
are weakened. Also, the rate of sub-sampling is limited to the
radius of the filtering patch. Therefore, the acceleration has a
limitation in the trade-off between precision and speed.
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TABLE I: Difference between the proposed and conventional
methods. After hyphens in (Prop.) is the acronym for the
sampling method of each channel.

Channel Index 1 2 3

Origin (Conv.) Full-sample Full-sample Full-sample
Fast (Conv.) Sub-sample Sub-sample Sub-sample
PCA-FSS (Prop.) Full-sample Sub-sample Subsample
PCA-FFB (Prop.) Full-sample Full-sample Box Filter
PCA-FSB (Prop.) Full-sample Sub-sample Box Filter
PCA-SSB (Prop.) Sub-sample Sub-sample Box Filter
PCA-FBB (Prop.) Full-sample Box Filter Box Filter
PCA-SBB (Prop.) Sub-sample Box Filter Box Filter

In this paper, we propose a new approximated acceleration
for the guided image filtering by utilizing a bias of color
information. The proposed method converts the RGB color
space into a color space introduced by the principal component
analysis (PCA). With this conversion, the importance of image
signals in each channel is concentrated; thus, we can sub-
sample more spatial information in signals of nonessential
channels. When we largely sub-sampled signals, moreover,
edge information is almost lost in low-rank channels, however,
the signals have not significant amplitude. In this case, the
guided image filtering can approximate by the simple box
filter for acceleration. The Table I summarizes the difference
between the proposed method and the conventional method.
The proposed method reduces spatial information by various
methods for each channel.

II. GUIDED IMAGE FILTERING

In this section, we summarize the guided image filtering and
fast one. The guided image filtering converts local patches in
an input image by a linear transformation of a guide image.
Let the guide signal be I . The output q is assumed as follows;

qi = akIi + bk,∀i ∈ ωk (1)

where k indicates a center position of a rectangular patch ωk,
and i indicates a position of a pixel in the patch. ak and
bk are coefficients for the linear transformation. The equation
represents that guide signals in a patch are linearly converted
by the coefficients.

The coefficients are calculated by a linear regression of the
input signal p and (1).

arg min
ak,bk

=
∑
i∈ωk

((akIi + bk − pi)2 + εa2k) (2)



The coefficients are estimated as follows;

ak =
covk(I, p)

vark(I) + ε
, bk = p̄k − akĪk, (3)

where ε indicates a parameter of smoothing degree. ·̄k, covk
and vark indicate mean, variance, and covariance values of
the patch k. The coefficients are over overlapping in the output
signals; thus, these coefficient are averaged.

āi =
1

|ω|
∑
k∈ωi

ak, b̄i =
1

|ω|
∑
k∈ωi

bk, (4)

| · | indicates the number of elements in the set. Finally, the
output is calculated as follows;

qi = āiIi + b̄i, (5)

For color filtering, let input, output and guidance signals be
p = {p1, p2, p3}, qn (n = 1, 2, 3), and I , respectively. The
per channel filtering output is defined as follows;

qni = ān
i
T
Ii + b̄ni , (6)

ān
i =

1

|ω|
∑
k∈ωi

an
k, b̄ni =

1

|ω|
∑
k∈ωi

bnk, (7)

The coefficients an
k, bnk for the linear transformation is ob-

tained as follows;

an
k =

covk(I, pn)

vark(I) + εE
, bnk = p̄nk − an

k
T
Īk, (8)

where E is an identity matrix. When the output signal is color
image, covk is the covariance matrix of the patch in p and I .
Also, vark is the variance of the R, G, and B components,
which will be covariance matrix, in the patch of I . The
division of the matrix is calculated by multiplying the inverse
matrix of the denominator from the left. The calculation results
of per pixel mean, variance, and covariance are obtained from
the box filter. The filter can be implemented with a recursive
filter [27], which can work in a constant time per pixel.

The fast guided filtering, which is an approximated accel-
eration, is expressed as follows;

qni = ān
i
T

↑↓Ii + b̄ni ↑↓, (9)

where ↑ and ↓ indicate up-sampling and sub-sampling oper-
ators, respectively. The fast guided filtering computes āi and
b̄i in sub-sampled image domain for acceleration, and then
simply up-sampled the coefficients.

ān
i ↑↓ := (ān

i ↓) ↑, b̄ni ↑↓ := (b̄ni ↓) ↑, (10)

ān
i ↓ =

1

|ω′|
∑

k∈ω′
i

an
k↓, b̄ni ↓ =

1

|ω′|
∑

k∈ω′
i

bnk↓, (11)

an
k↓ =

covk(I↓, p
n
↓)

vark(I↓) + εE
, bnk↓ = p̄nk↓ − an

k
T
↓ Īk↓, (12)

Note that the filtering radius is reduced according to the rate
of sub-sampling. ω′ indicates a small rectangular patch, which
is reshaped to fit the rate of sub-sampling.

III. PRINCIPAL COMPONENT ANALYSIS

The principal component analysis is a technique to syn-
thesize variables that hold the most information from many
correlation variables. In many cases, the color distribution of
an RGB image is not uniformly distributed. The bias of color
information is obtained by converting the pixel distribution in
the RGB color space to the color space obtained by PCA.

Let input signals be p = {p1, p2, p3}. The first principal
component p̂1 is defined as follows;

p̂1 = P11p
1 + P12p

2 + P13p
3, (13)

where P1 = {P11, P12, P13}T is a transformation matrix. The
variance of p̂1 is expressed as follows;

var(p̂1) =
1

N

N∑
i=0

(p̂1i − ¯̂p1)2, (14)

where ¯̂p1 is a average of ¯̂p1. N indicates the sum of total
pixels in the image. For simplicity, let (13) be P1p. Let Ā
is Ā = {p1 − p̄1, p2 − p̄2, p3 − p̄3}. The formula obtained by
assigning P1Ā is transformed as follows;

var(p̂1) =
1

N
(P1Ā)T(P1Ā) (15)

= PT
1 P1(

1

N
ĀTĀ) (16)

= PT
1 P1var(Ā). (17)

We have to obtain the P1 that maximizes the var(p̂1). When
P1 is a unit vector, it can be treated as a problem of the
constrained maximum. Thus, (17) is calculated by a method
of Lagrange multiplier.

F (P1, λ) = PT
1 P1var(Ā)− λ(PT

1 P1 − 1), (18)

where λ is a undetermined multiplier. Solving the partial
differential equation, (18) is as follows;

∂F

∂P1
= 2P1var(Ā)− 2λP1, (19)

var(Ā)P1 = λP1, (20)

where var(Ā) is a covariance matrix of p1, p2 and p3. p̂1 is
obtained by computing the eigenvector from the eigenvalues
of the matrix. The eigenvalues of the covariance correspond to
the first, second and third principal components in descending
order of values. Then, the transformation vectors to the second
and third principal components are also obtained from the
eigenvalues. By projecting with the transformation vector, the
PCA-based color space is obtained.

IV. PROPOSED METHODS

The proposed method, firstly, converts RGB input signals p
into PCA-based color space p̂.

p̂ = Pp, p̂ = {p̂1, p̂2, p̂3}, (21)

where P is a transformation matrix (3×3) derived from PCA
of the RGB input image. p̂1, p̂2, and p̂3 represent the first,



second and third principal components, respectively. Since
p̂1 is important information, p̂1 should be kept high or full
sampling ratio. On the other hand, p̂2 and p̂3 can be done
in a down-sampled domain. The p̂2 and p̂3 are then up-
sampled by cubic interpolation. The coefficients for the linear
transformation is obtained as follows;

an
k =

covk(I, p̂n)

vark(I) + εE
, bnk = ¯̂pnk − an

k
TĪk, (n = 1) (22)

an
k↓ =

covk(I↓, p̂
n
↓ )

vark(I↓) + εE
, bnk↓ = ¯̂pnk↓ − an

k
T
↓ Īk↓, (n = 2, 3)

(23)

The coefficients are processed by the average in (4) and (11).
The output q̂ni is calculated as follows;

q̂ni =

{
ān
i
T
Ii + b̄ni (n = 1), (24)

ān
i
T

↑↓Ii + b̄ni ↑↓ (n = 2, 3). (25)

Note that q̂n is introduced from input signal in the PCA-
based color space, and we do not convert guidance signal
channels. If we use the PCA-based color space directly for
the guided image filtering, the filtering attribute is changed
in the case of shearing the input and guidance signals, which
is no additional guidance information case. Thus, we utilize
that the guided image filtering as a joint filter [28], [29],
even if the filtering is the non-joint filtering case. We use the
unconverted signal for guidance images I for joint filtering
to maintain the characteristics. Finally, q̂ni are converted back
into RGB signals by inverse color conversion (26). We call
this approximation PCA-FSS (Full-Sub-Sub sampling).

q = P−1q̂ (26)

The coefficients an
k and bnk in (8) have vark(I) and Īk,

whose values are the same for all channels of the input
signal n. Since this term depends only on the guide signal,
the calculation result of n = 1, 2, 3 can be reused. In the
proposed method, however, the term that does not hold the
characteristics, because we switch the computing method
depending on n as in (22) and (23). The calculation result of
n = 1, therefore, cannot be used for n = 2, 3. This problem is
caused by the difference in image size between p̂1 and p̂2, p̂3.
The calculation vark(I↓) and Īk↓ increased by the proposed
method becomes recalculation for the sub-sampled signal. The
processing time of this calculation is not bottlenecked, but we
examined the acceleration of this processing for further speed-
up. We solve this problem by down-sampling the covariance
matrix of the higher resolution, which method is introduced in
image up-sampling method with local covariance values [30].
We considered the following three cases for the calculation.
First, we recalculate Īk↓ and vark(I↓).

Īk↓ := Īk↓, vark(I↓) := vark(I↓) (27)

This method is indicated by (recalc var), and is no approxi-
mation. Next, Īk and vark(I) are obtained from sub-sampling
full resolution values for acceleration.

Īk↓ ≈ (Īk)↓, vark(I↓) ≈ (vark(I))↓ (28)

This approximation is indicated by (resize Ī , resize var).
In the final case, we recalculate only Īk↓, and sub-sample
vark(I) is used.

Īk↓ := Īk↓, vark(I↓) ≈ (vark(I))↓ (29)

This approximation is indicated by (recalc Ī , resize var).
Furthermore, we focus on the fact that the intensity of the

signal p̂3 is small. Processing three channels with different
sub-sampling sizes lead to increase processing time for var
matrix. We notice that when sub-sampling the signal largely,
the output cannot maintain the edge. Thus, there is no signifi-
cant difference between the output of the box filter and guided
image filter. Beside, importance of p̂3 is low for reconstructed
images; therefore, q̂3i in (25) can be approximated as follows;

q̂ni =


ān
i
T
Ii + b̄ni , (n = 1) (30)

ān
i
T

↑↓Ii + b̄ni ↑↓, (n = 2) (31)
¯̂pni ↑↓, (n = 3) (32)

This method utilizes full sampling for p̂1 and sub-sampling
for p̂2, and sub-sampling and filtering with a box filter for p̂3.
Then, the p̂2, p̂3 are up-sampled. We call this approximation,
PCA-FSB (Full-Sub-Box). The approach can also extend to
the fast guided filter by sub-sampling p̂1 as shown in (25).

q̂ni =

{
ān
i
T

↑↓Ii + b̄ni ↑↓, (n = 1, 2) (33)
¯̂pni ↑↓, (n = 3) (34)

This approximation is indicated by PCA-SSB (Sub-Sub-Box).
q̂2i can also be approximated as follows;

q̂ni =

{
ān
i
T

↑↓Ii + b̄ni ↑↓, (n = 1) (35)
¯̂pni ↑↓, (n = 2, 3) (36)

This approximation is indicated by PCA-SBB (Sub-Box-Box).
When the fast guided filtering is described like the proposed
method, it becomes RGB-SSS (Sub-Sub-Sub).

When approximating with box filter without sub-sampling,
it is as follows.

q̂ni =

{
ān
i
T
Ii + b̄ni , (n = 1, 2) (37)

¯̂pni ↑↓, (n = 3) (38)

q̂ni =

{
ān
i
T
Ii + b̄ni , (n = 1) (39)

¯̂pni ↑↓, (n = 2, 3) (40)

This approximation is indicated by PCA-FFB (Full-Full-Box)
and PCA-FBB (Full-Box-Box), respectively.

V. EXPERIMENTAL RESULTS

In the experiment, firstly, we investigated the calculation of
vark(I↓) and Īk↓ in PCA-FSS and PCA-FSB. We compared
the methods (resize Ī , resize var), (recalc Ī , resize var) and
(recalc var). The approximation accuracy was evaluated with
the peak signal noise ratio (PSNR) of the average of each RGB
channel between the approximation and naı̈ve implementation.
We employed 24 images (768 × 512), which are Kodak test
images, for evaluation. We use Intel Core i5-7500 3.4 GHz
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Fig. 1: PSNR for the calculation of Īk↓ and vark(I↓) (r = 4,
ε = 0.22).

TABLE II: Processing time for the calculation of Īk↓ and
vark(I↓). [ms]

sub-sample
rate

recalc var resize Ī ,
resize var

recalc Ī ,
resize var

small large small large small large

3/4 2.81 30.39 2.45 20.05 2.03 17.03
2/4 0.93 14.41 0.79 8.30 0.76 8.16
1/4 0.36 4.10 0.68 5.20 0.33 3.82

(4 threads). The code is written in C++ (Visual Studio 2015
C++). The filters are vectorized by AVX and parallelized by
four threads. Experimental results are shown in Fig. 1 and Ta-
ble II. Figure 1 shows the approximation accuracy. (resize Ī ,
resize var) and (recalc Ī , resize var) have lower accuracy
than (recalc var), but deterioration is not high. Table II shows
the processing time. The calculation time was the average of
10000 trials. We employed the large image (1920×1200) and
the small image (512× 512). Table II shows that the method
of sub-sampling vark(I) is effective regardless of the image
size. Also, the table shows that the recalculation is effective
in Īk↓. Computing resize Ī requires large input images; thus
computing throughput is down. We employed, therefore, Ī ,
resize var which is a method of recalculating Īk↓ and sub-
sampling vark(I) for acceleration.

Also, we compared the proposed method with the fast
guided filtering. The calculation time was the average of
10000 trials. The approximation accuracy was also evaluated
with PSNR of the average of each RGB channel between
the approximation and naı̈ve implementation. We employed
24 images (768 × 512), which are Kodak test images, for
evaluation. Experimental results are shown in Fig. 2. Figure 2
shows the trade-off between computational time and PSNR.
The plots with connected lines are the same filtering method
varying down-sampling ratio. The changing down-sampling
rates are three-quarter, two-quarter, and one-quarter with the
fixed radius of the filtering, which was 4. The proposed
method indicates the better trade-off than the conventional
method. The PCA-FSS, PCA-FSB, and PCA-FFB have higher
accuracy than the conventional approximation. In particular,
the PCA-SSB and PCA-SBB achieve higher speeds than
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Fig. 2: Processing time and PSNR (r = 4, ε = 0.22).

TABLE III: Computational cost [ms] of PCA parts. Pp
contains the calculation of the covariance matrix for computing
P and P−1.

Process Processing time

Pp 0.57
P−1q̂ 0.17

the conventional acceleration approximation with keeping the
same accuracy level. Here, Table III shows the processing time
of the PCA part. We can find that the related processing time
of PCA is minimal.

Figure 3 shows the output images, which sub-sample rate
is 2/4. The proposed method (c) - (f) is subjectively well.
In Fig. 2, the fast guided filtering, PCA-SSB, and PCA-SBB
have the lowest accuracy. Figure 4 shows the too sub-sampling
point in the fast guided filtering. We can find that edge signals
in an image are weakened.

VI. CONCLUSION

In this paper, the guided image filtering could be accurately
accelerated by the principal component analysis with down-
sampling or approximating by box filtering. Experimental
results showed that the proposed method was superior to
the conventional acceleration of the fast guided image filter-
ing [26].
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