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Abstract—In this paper, we propose efficient computational
scheduling of box and Gaussian filtering. These filters are fun-
damental tools and used for various applications. The computa-
tional order of the naı̈ve implementations of these FIR filters are
O(r2), where r is the kernel radius. A separable implementation
reduces the order into O(r) but requires twice times of filtering.
A recursive representation dramatically sheds the order into
O(1) but also needs twice or more times filtering. The efficient
representation curtails the number of arithmetic operations;
however, the influence of data I/O for the computational time
becomes dominant. In this paper, we optimize the computational
scheduling of O(1) box and Gaussian filters to competently
utilize cache memory for reducing the computational time of
data I/O. Experimental results show that the proposed scheduling
has higher computational performance than the conventional
implementation.

I. INTRODUCTION

Box and Gaussian filters are essential tools in image
processing. Applications of these filters are widely used in
not only simple smoothing, but stereo matching [1], feature
description, e.g., SIFT [2] and SURF [3], saliency map [4], and
image quality metrics of SSIM [5]. These fundamental filters
are further utilized for advanced filtering of edge-preserving
filtering, such as accelerations of bilateral filtering [6], [7],
[8], [9], [10], [11], [12], guided image filtering [13] and
its variants [14], [15], [16], [17], [18], [19], [20], [21], and
domain transform filtering [22]. In addition, the filters are used
in the application of edge-preserving filtering, such as high dy-
namic range imageing [7], haze removing [23], free viewpoint
view synthesis [24], and advanced stereo matching/optical flow
estimations [25].

The box and Gaussian filters are 2D finite impulse response
(FIR) filters. The computational order is O(r2), where r is the
kernel radius. Computation of these filters has some practical
solutions. A traditional approach is a separable implemen-
tation. The 2D filters are decomposed into a combination
of 1D FIR filters, and its computational order is O(r). A
recursive representation of the box [26] and Gaussian [27],
[28] filters further reduce the computational order, O(1), i.e.,
the computational time of the filtering does not depend on the
kernel radius. The efficient representation curtails the number
of arithmetic operations; consequently, the influence of data
I/O for the computational time becomes dominant.
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The capability of arithmetic operations and data I/O de-
pends on computer architectures. Currently, domain-specific
programming languages, such as Halide [29], [30] and Dark-
room [31], focuses on optimizing computational scheduling
in image processing for more complexing computing architec-
tures. The languages effectively deal with how to compute data
with parallelization, vectorization, and computing sequences.
For complex computational scheduling, the language cannot
handle well; hence, hand turning is required, yet. For example,
appropriate turning extracts more computational performance
in the FIR filtering case [32].

In this paper, we propose efficient computational scheduling
of the box and Gaussian filters for CPUs. Moreover, we focus
the case of multi-channel images, such as color/hyperspectral
image, and high dimensional feature data. These filters have
not dependencies in channels; thus, we can vectorize and
parallelize processing for channel domains less overhead.
Note that multichannel filtering requires many channels for
parallelization, and the multichannel filtering has a low spatial
locality in data accesses; therefore, the trade-off between
parallelisms in the channel and spatial domains is essential.

Note that there are several efficient algorithms of the box
and Gaussian filters for GPUs [33], [34], [35], [36]; however,
these algorithms are aimed for massively parallel computing
that requires hundreds of cores.

II. CONVENTIONAL WORK

A. Box filtering and its computational scheduling

There are several implementations of box filtering, such as
naı̈ve convolution, separable convolution, integral image, and
summed area table. Table I summarizes each implementation
with the proposed method described in Sec. 3.

In the traditional FIR convolution, whose computational
order is O(r2), there is no limitation in vectorization and
parallelization. The definition is as follows;

O(x, y) =

r∑
i=−r

r∑
j=−r

I(x+ i, y + j), (1)

where I(x, y), O(x, y) are input and output images on pixel
coordinates x, y, respectively. The output O is normalized as
follows;

O′(x, y) =
1

(2r + 1)2
O(x, y). (2)
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TABLE I: Comparison of each implementation of box and Gaussian filtering. (S) and (C) indicate spatial and channel domain,
respectively. Bold fonts imply the proposed scheduling.

Parallelization (S) vectorization (S) Parallelization (C) vectorization (C) No. Stage Order
2D FIR (Both) unlimited unlimited unlimited unlimited 1 O(r2)
Sep. 1D FIR (Both) unlimited unlimited unlimited unlimited 2 O(r)
Integral (Box) only 2nd stage only 2nd stage unlimited unlimited 2 O(1)

SSAT (Box) unlimited, but
noticeable overhead

vertical: unlimited
horizontal: inefficient unlimited unlimited 2 O(1)

OP-SAT (Box) redundant processing impossible unlimited unlimited 1 O(1)

Sliding (Gauss) unlimited, but
noticeable overhead

vertical: unlimited
horizontal: inefficient unlimited unlimited 2 O(1)

OP-Sliding (Gauss) redundant processing impossible unlimited unlimited 1 O(1)

One multiplication operation is only required for this oper-
ation, since the normalization value is constant. The other
implementations also perform this normalization process.

The separable implementation, whose order is O(r), is
faster than the naı̈ve. The scheduling decomposes a 2D filter
into two 1D filters. The implementation of the separable FIR
filtering, which is vertical and then horizontal filtering, is as
follows;

J(x, y)=

r∑
i=−r

I(x, y+i), O(x, y)=

r∑
j=−r

J(x+j, y), (3)

where J is an intermediate image. The separable FIR requires
two stages, but tiling and interleaving of the two stages
maximize the cache efficiency. Furthermore, the tiling and
interleaving do not take much overhead. Therefore, this tradi-
tional method could be the fastest method in the small kernel
radius case.

Integral image processing is O(1) and requires two-stage
processing, which are generating integral images and are
smoothing images. The first stage generates an integral image
II , and then the second stage smooths an output by using the
integral image.

II(x, y) =

x∑
i=0

y∑
j=0

I(x, y), (4)

O(x, y) = II(x+r, y+r)− II(x−r−1, y+r)

− II(x+r, y−r−1) + II(x−r−1, y−r−1). (5)

The first stage cannot be vectorized and needs redundant
processing for parallelization. The second stage, conversely,
can be fully vectorized and parallelized; thus, the first stage
is a bottleneck. The integral image can adaptively change
filtering radius per pixel. This characteristic has an advantage
for specific applications, e.g., face detection; however, the
filtering speed is not high in term of simple smoothing.

Separable summed area table (SSAT) is also O(1) comput-
ing and also requires two stages, which include horizontal and
vertical filtering. SSAT is defined as follows;

J(x, y)=J(x, y−1) + I(x, y+r)− I(x, y−r−1), (6)
O(x, y)=O(x−1, y) + J(x+r, y)− J(x−r−1, y). (7)

The recursive representation extinguishes the summation, and
then the filtering consists two additions and two subtractions.
The algorithm has a dependency in the computational pixel
order; hence, there are some limitations in parallelization and
vectorization. The vertical filtering can be vectorized without
limitation and be parallelized along the raw order. The horizon-
tal filtering can be parallelized along the column order but has
limitations in vectorization [37]. For vectorization, we should
transpose overall images or partial-block images; however,
the transposing operation itself is cost-consuming. The other
solution is loop unrolling vertical direction and then gathering
vertical pixels. The gathering cost is higher than the usual
loading operations, but this method has the lighter cost than the
transpose. Further, the computational sequence of separable
filters of horizontal and vertical direction is also essential for
cache efficiency. The parallel granularity of both horizontal
and vertical filters are fine grain; therefore, the overhead of
parallelization is large. More cache efficient solutions, e.g.,
tiling and interleaving, require redundant computation.

Note that there is no limitation for vectorization and par-
allelization of each scheduling of box filtering in channel
domains.

B. Gaussian filtering and its computational scheduling
In Gaussian filtering, there is the similar implementation

of box filtering, such as naı̈ve and separable convolutions and
sliding implementation, which is similar to SSAT. Also, Gaus-
sian filtering has the other efficient solutions. FFT (fast Furrier
transform) is a traditional solution. The order is O(S logS),
where S is image size. IIR (infinite impulse response) rep-
resentation is the more efficient solution. The order is O(1);
however, the IIR requires twice or more image scans for each
separable direction; hence, the 2D image convolution requires
four image scans at least.

The sliding DCT based approaches [27], [28], [38] reduce
the scanning times with approximating Gaussian FIR filtering.
We denote this approach Sliding. The Gaussian filter can be
approximated in the summation of DCT convolutions, O =∑n

k Ck ∗ I , where Ck is the k-th DCT convolution kernel and
n is the number of coefficients. The DCT convolution has a
recursive representation introduced by the second-order shift
property. Let be C ∗ I = F ;

Fk(x, y+1) = 2a1Fk(x, y)−Fk(x, y−1)+arδ(x, y), (8)
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Fig. 1: Computational scheduling of OP-SAT.
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Fig. 2: Computational time of separable FIR convolution and
SSAT with/without parallelization. “H V” and “V H” indicate
horizontal filtering and then vertical one, and its reverse
order. “interleave V H” means interleaving vertical filtering
and then horizontal one per each scan line. “vec” and “non”
means applying vectorization or not and “T” means transposed
operation and “Block 8x8” means block transposing.

where a1,r are DCT coefficients, and δ is defined by;

δ(x, y) = I(x, y − r) + I(x, y + r). (9)

This is the DCT-III based definition. The other representations
of the DCT I, II, and IV are shown in [28]. The DCT
convoluted output is summed to a horizontal filtering result,
J(x, y) =

∑n
k Fk(x, y). Then vertical filtering is as defined

in the same manner;

Gk(x+1, y) = 2a1Gk(x, y)−Gk(x−1, y)+arδ(x, y), (10)

δ(x, y) = J(x− r, y) + J(x+ r, y). (11)

Finally, we sum up the outputs of vertical DCT filtering,

O(x, y) =

n∑
k

Gk(x, y). (12)

III. PROPOSED COMPUTATIONAL SCHEDULING

We introduce an extension of SSAT, which reduces the
number of scanning stages to one. Then, we extend this
approach for sliding Gaussian filtering.

A. Box Filtering

We propose computational scheduling for the box filter,
where we merged the two stages in SSAT to one. We call
the approach, one pass summed area table (OP-SAT). OP-SAT
interleaves the computational order of horizontal and vertical
filters per a pixel. The scheduling is represented as;

J(x+r, y)=J(x+r, y−1)+I(x+r, y+r)−I(x+r, y−r−1), (13)
O(x, y)=O(x−1, y)+J(x+r, y)−J(x−r−1, y). (14)
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Fig. 3: Computational time of Box Filtering w.r.t. kernel radii
(r) with/without parallelization.
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Fig. 4: Processing time and parallel efficiency w.r.t. the number
of cores. (SSAT Hnon Vvec).

Fig. 1 visually demonstrates the scheduling. Let compute a
3× 3 filter centering a red rectangle pixel (x, y). Blue rectan-
gles show already averaged 1×3 parts. At first, we compute the
right 1×3 mean of J(x+r, y) in (12). Then, we compute the
output by adding J(x+r, y) and subtracting the oldest vertical
averaging in (13). This scheduling can compute the average
by two additions and two subtractions for summation and
one multiplication for normalization. Moreover, the proposed
scheduling can perform filtering with one stage by the raster
scan order. Therefore, the method is more cache efficient.

Note that this approach cannot vectorize the filter in the
spatial domain; however, this method is cache efficient and
can vectorize pixels in the channel domain. Moreover, this ap-
proach can spatially parallelize filtering by splitting overlapped
image with redundant computation. Besides, the parallelization
is coarse-grained; thus, the parallelized efficiency is higher
than SSAT.

B. Gaussian Filtering

There are box-averaging-like parts in the representation of
sliding DCT for Gaussian filtering. In this paper, we use the
proposed one pass scheduling for the sliding approach, which
is named OP-Sliding. In (11), we need J(x+r, y); however,
this part is not computed in the raster scan order; thus, we
compute this at first and then compute (10);

J(x+r, y)=

n∑
k

2a1Fk(x, y−1)−Fk(x, y−2)+arδ(x, y−1). (15)

This is the almost same process of (13).
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Fig. 5: Processing time and parallel efficiency w.r.t. the number
of cores. (OP-SAT).

0

5

10

15

20

25

8 16 24 32 40 48 56 64

P
ro

ce
ss

in
g

 T
im

e 
[m

s]

The Number of Channels

non-Div
2-Div
4-Div
8-Div

(a) Parallerization trade-off

0

5

10

15

20

25

30

35

40

8 16 24 32 40 48 56 64

P
ro

ce
ss

in
g
 T

im
e 

[m
s]

The Number of Channels

OP-SAT

SSAT_Space

SSAT_Channel

(b) Comparison of each method

Fig. 6: Parallelization trade-off between spatial and channel
domain and comparison results with SSAT with spacial or
channel parallerization.

IV. EXPERIMENTAL RESULT

A. Box Filtering

We compared each scheduling of box filtering at first.
Filtering radius was r = 10, and image size was 1920×1080.
We used single floating values for each implementation and
computed by Intel Core i7 6700 (4 cores, 8 threads) with
Visual Studio 2015. The code was optimized by OpenMP and
AVX/AVX2.

Firstly, we compared each separable FIR for grayscale
images. In this case, we can apply parallelization and vec-
torization for spatial domain. Fig. 2a shows the computational
time of the separable FIR with various computational orders
with/without parallelization. Note that each implementation is
vectorized. The result shows that interleaving implementation
is the fastest, and each method has high parallelizability.

Next, we compared each SSAT implementation in Fig. 2b.
Horizontal and then vertical filtering is the fastest due to the
cache efficiency. Note that the horizontal vectorization did
not affect. Also, transposed approaches have much overhead;
therefore, these are slower than non vectorized solutions.

Then, we compared the fastest separable FIR and SSAT,
integral image, and the proposed scheduling in Fig. 3. In
this experiment, we changed the kernel radius. In the serial
processing, the separable FIR is the fastest until 11 × 11
(r = 5). In the parallel processing, the separable FIR is the
fastest until 3 × 3 (r = 1). In the other case, OP-SAT is
the fastest. OP-SAT cannot be vectorized, but the method
is faster than SSAT, which is known as the most efficient
implementation.

We analyzed, additionally, parallelization efficiency for
SSAT and OP-SAT in Figs. 4a, 4b with several filtering

radius cases (r = 1, 10, 50, 100). OP-SAT has higher parallel
efficiency than SSAT. OP-SAT increases overheads concerning
the size of the kernel radius, while SSAT is almost flat.
Focusing the actual computing time, however, the proposed
method is still faster than SSAT, even if we set the large kernel.

Next, we compared the multi-channel case. We set filtering
radius r = 10, and image size was 512 × 512. OP-SAT can
parallelize spatial and channel domains; thus, we optimize the
trade-off between the parallelization. Note that vectorization
is utilized for channel domain. We used a CPU with 8 threads
and compared four dividing cases. “non-div” means no spatial
parallelization, but parallelizing channels, and “2-div” means
spatially parallelizing with two threads and the other is used
for channels. “4-div” means the spatially four threads case, and
“8-div” means all threads are used for spatial parallelization.
Fig. 6 shows the result of the trade-off. For small channel
cases, spatial parallelization is adequate; however, channel
parallelization is efficient in many channel cases.

Finally, we compared the proposed method with SSAT of
the channel and spatial parallelization in Fig. 6b. The pro-
posed method was the optimized version of the parallelization
result in Fig. 6a. Note that integral image and separable FIR
implementations were omitted because these implementations
are slower than SSAT and OP-SAT. The proposed method is
faster than the both SSAT parallelized implementations.

B. Gaussian Filtering

For Gaussian filtering, we compared with separable FIR,
recursive separable representation, and the proposed method
of one pass representation. We selected representative exper-
imental results for Gaussian filtering. We used a grayscale
image (1920× 1080), and a multi-channel image (512× 512).

Fig. 7a shows computational time to the filtering radius
in a grayscale image. Note that all implementations were
parallelized, and separable FIR was vectorized. Vectorized
sliding is the fastest because OP-Sliding cannot be vector-
ized. Comparing with SSAT box filtering, sliding Gaussian
has higher computational intensity; thus, vectorizing spatial
domain is more effective. Looking back at the box case,
vectorizing SSAT has a minor effect. The proposed scheduling
is faster than the non-vectorized sliding; hence, OP-Sliding is
more cache efficient than the conventional sliding approach,
and OP-Sliding has a room of vectorization unit.

Fig. 7b shows computational time to the number of channels
in a multi-channel image. Parallelization is performed in chan-
nel domain for OP-Sliding and spatial domain for Sliding, and
all method are vectorized in the channel domain. The proposed
scheduling can utilize vectorization units for the channel
domain and more cache efficient scheduling; therefore, OP-
Sliding is faster than the conventional one. In this experiment,
we omitted the separable filtering result, since this approach
is not fast.

V. CONCLUSION

In this paper, we proposed effective computational schedul-
ing for FIR filtering of the box and Gaussian filtering for
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Fig. 7: Processing time of grayscale and multi-channel Gaus-
sian filtering. For the grayspace case, OP-Sliding is not vec-
torized, and the others are vectorized. For the color case, the
radius is constant (r = 16), and the filters are vectorized in
channel domain. n = 1 for sliding DCT.

current CPU micro-architectures. The proposed scheduling
optimizes O(1) FIR filters to reduce the number of filtering
stages into one. This approach makes the filters more cache
efficient and speeds up the box and Gaussian filters in gray
and multi-channel images.
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