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ABSTRACT

We propose an iterative closest point (ICP) based calibration
for time of flight (ToF) multiple depth sensors. For the multiple
sensor calibrations, we usually use 2D patterns calibration with
IR images. The depth sensor output depends on calibration pa-
rameters at a factory; thus, the re-calibration must include gaps
from the calibration in the factory. Therefore, we use direct cor-
respondences among depth values, and the calibrating extrinsic
parameters by using ICP. Usually, simultaneous localization and
mapping (SLAM) uses ICP, such as KinectFusion. The case of
multiple sensor calibrations, however, is harder than the SLAM
case. In this case, the distance between cameras is too far to apply
ICP. Therefore, we modify the ICP based calibration for multiple
sensors. The proposed method uses specific calibration objects to
enforce the matching ability among sensors. Also, we proposed a
compensation method for ToF depth map distortions.

Index Terms — Multiple RGB-D camera, Multiple Kinect,
Calibration, ToF, ICP

1. INTRODUCTION

Depth sensors are essential devices for 3D applications. In the ap-
plications, extrinsic camera calibration is essential to utilize mul-
tiple depth sensors for real-time 3D modeling and 3D video, and
free viewpoint TV [1]. Usual cases of camera calibrations of RGB
images use a 2D image pattern, which has known geometry, and
then the relationship among points in the 2D image and its 3D
coordinates introduces the calibration results [2]. Depth sensors,
which include time of flight (ToF) [3, 4] and structured light [5, 6],
have infrared (IR) cameras; thus, we can also calibrate the sensors
by the 2D image pattern on the IR images. Besides, RGB-D sen-
sors, e.g., Microsoft Kinect, Kinect V2, Intel RealSense, and so
forth, also have RGB sensors; hence, we can calibrate the sensors
by the usual camera calibration in RGB images.

Calibration accuracy is an issue in the depth sensor calibration
with 2D patterns. There are stitching gaps in transformed 3D mod-
els from the multiple sensors with the calibration results due to
depth map distortions. In particular, depth maps of ToF depth sen-
sors have several distortions, such as lens distortion, vignetting,
sensor’s heating-time, wavelength sensitivity of IR sensor, relative
positions of IR emitter and camera, and wiggling [7, 8, 9]. These
distortions generate spatial and temporal errors e on the true depth
value z for the capturing depth value zdepth;

zdepth = z + e(i, j, z, t), (1)

where i, j are pixel positions and t is time from the sensor startup.
With such distortions, it is hard to recover 3D geometry from
the usual the number of image corresponding points. We require
tremendous corresponding relations for this problem [10]. For-
tunately, tendencies of the distortions are similar in multiple sen-
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Figure 1. Calibration objects for ICP. Radius of all object is 15 cm. Height
of low hemisphere is 3 cm. One of hemisphere is 7.5 cm. One of cylinder
is 2 cm. One of truncated cone is 2 cm. Upper-side radius of truncated
cone is 10 cm. 9 objects are put on a plane object (60 cm × 80 cm).

sors; thus, direct 3D corresponding, such as iterative closest point
(ICP) [11, 12], minimizes the gaps straightforwardly.

Simultaneous localization and mapping (SLAM) with depth
maps utilizes ICP in applications, such as Kinect Fusion [13].
These applications reconstruct 3D models from sequences of depth
maps obtained by a single depth sensor. In this condition, the
system aligns the depth maps captured around near location by
ICP. In the condition of multiple depth sensors, registering depth
maps are located at far positions because of a limitation of the
number of sensors and interference [14] among IR output of sen-
sors. The condition causes tremendous miss-matching; therefore,
the SLAM approach fails registration between point clouds from
depth maps for the calibration of the multi-depth sensors. The pa-
per [15] resolves this problem by using a rough alignment method
for ICP initialization, but the method has remaining gaps.

In this paper, we propose an ICP based calibration for ToF
sensors (Kinect V2). The main contributions of this paper are;

• demonstrating convenient calibration objects for the ICP
based calibration,

• showing effective ICP steps for largely distant ToF sensors,

• proposing a depth correction method for the distortion of
ToF sensors by combining ICP based calibration with a 2D
pattern based one.

2. PROPOSED METHOD
2.1. ICP for registration
The proposed method utilizes specific calibration objects for ICP
registration. Figure 1 shows various shapes of the calibration ob-
jects. Essential points of the calibration objects are:

1. containing much 3D features or unevenness,

2. suppressing occlusions,

3. having easiness to trim the objects.

Points 1 and 2 have a trade-off relationship; therefore, we prepare
four types, which have different height and surface.

In our calibration procedure, we capture a depth map and
transform the depth map to point clouds, and then we trim and
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Figure 2. Calibration objects for proposed ICP steps.
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Figure 3. Combining multiple calibration objects.
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Figure 4. Flow of proposed ICP steps.

down-sample the point clouds (Fig. 2). Next, we iterate cap-
turing and combine multiple point clouds of the calibration ob-
jects, which have different positions and orientations (Fig. 3). Fi-
nally, we perform our ICP steps. At first, we initialize rotation
and translation parameters by using a blueprint of sensors setups.
For example, we set 90-degree for rotation and 2-meter radius be-
tween two sensors, in this paper. Then, we perform ICP, which
is the sparse ICP with point-to-plane matching [12] and is robust
to noises. The point-to-plane based ICP requires normal vectors,
which are the first order of local features and tend to be noisy;
thus, we smooth the point clouds by 3D Gaussian filtering before
ICP. The simple filtering had better performance than the edge-
preserving refinement filtering [16]. Figure 4 shows the ICP steps.

The proposed method requires specific calibration objects, and
also the conventional 2D pattern based calibration requires spe-
cific objects. The significant difference between the objects is the
accuracy of forming the objects. For 2D pattern object, we need
precise printing on hard materials for obtaining certain relation-
ships between the printing object position and imaging position.
On the contrary, our calibration patterns do not require such ac-
curacy, because we utilize only correspondences between depth
maps. Therefore, we roughly handcraft our calibration objects
with cardboards and Styrofoam-objects.

2.2. Correcting distortion of depth map

Depth sensors have distortions in depth maps, and these 3D co-
ordinates also have distortions. ICP directly registers each depth
map; thus, the method minimizes these errors by adjusting rotation
and translation parameters. For more accurate calibrations, how-
ever, removing the depth map distortions is essential. We propose
z-compensation to cover following error factors; lens distortion,
the relative position of IR emitter and camera, and heating time.

For time-dependent distortion, we had 30-minutes pre-heating
time to obtain stable depth maps [7]. For lens distortion, we re-

Zcalib = 0.9914 Zdepth + 3.4665
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Figure 5. Linear distortion of depth map.
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Figure 6. Sensor setup.

calibrate intrinsic parameters by the 2D patterns approach on IR
images. We do not use factory provided intrinsic parameters.

Also, the causes of distortions, which are the error of the rel-
ative position of IR emitter and camera, and wiggling, generate
biases of depth sensor outputs. The critical factor is a twist of
calibration coordinates between factory and current calibrations.
When we obtain depth maps from an official library, the depth val-
ues of the depth map, Zdepth, is related to the extrinsic parameter
at factory estimation. To obtain the same extrinsic parameters, we
need identical objects at identical locations with identical noisy
IR images. Reproducing these conditions are impossible; thus,
the parameters have slight differences. For estimating the differ-
ence, we calibrate intrinsic and extrinsic parameters of a sensor by
using the 2D image patterns. With this process, we can obtain 3D
coordinates on corners of the 2D image patterns, and also we can
obtain depth values from the captured depth map co-located on the
calibrating images. Figure 5 shows the difference between depth
values on corners computed by the calibration parameter Zcalib

and Zdepth. We can find that the difference has almost linear rela-
tionship;

Zcalib = aZdepth + b. (2)

After this calibration, we can utilize the z-compensation param-
eters of a and b. We correct Zdepth values by multiply-and-add
with these parameters. The actual distortion has the per-pixel de-
pendency, although, the z-compensation removes the significant
errors. The remaining notable distortion is the vignetting-like dis-
tortion that is depth values are smaller near boundaries of images.
Recovering this distortion is hard; thus, we should discard bound-
ary pixels with some threshold, e.g., 50-pixels.

3. EXPERIMENTAL RESULTS

In our experiment, we surrounded an object with four sensors.
Figure 6 shows sensors configuration for experiments. All sen-
sors were located at 90-degree intervals with 2-meter radius. We
utilized Kinect V2 as depth sensors.

At first, we compared three approaches; the 2D patterns method,
the proposed ICP steps with a non-calibration object (human body),
and the proposed ICP steps with our calibration objects. Figure 7
shows each calibration object. In this experiment, we measured re-
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Figure 7. Comparing calibration patterns.

Figure 8. Registration result of body calibration object. Green and white
point clouds are captured by different sensors.
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Figure 9. Heat map of registration results.
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Figure 10. Histogram of registration results.

Table 1. Reprojection error of each calibration pattern. The low hemi-
sphere case has two result, which the lower is twice pattern capturing case,
and the higher is once capturing case. The other proposed method is once
capturing case.

2D Body
low hemi-

sphere
hemi-
sphere cylinder

truncated
cone

0.019 0.99 0.011/0.008 0.019 0.012 0.016

projection errors between input point clouds and one around pro-
jected point clouds with root mean square error (RMSE).

RMSE = ‖p− P4P3P2P1p‖2, (3)

where p is a vector, which contains 3D coordinates of point clouds,
and Pn = Rn;Tn(n = 1, 2, 3, 4) are projection matrices, which
are composed from a rotation matrix Rn and a translation vector
Tn. ‖ · ‖ indicates L2 norm. Note that we used the same point
clouds p for evaluations of each calibration method. The point
clouds are trimmed subjects, such as dolls, tables, and shelves.

Table 1 shows reprojection errors of each calibration object.
The proposed method with the proposed calibration object (low
hemisphere) has the best performance. In particular, lower height
objects have better performance because higher object generates

2D with Z 
correction

2D without 
Z correction

Prop. with Z 
correction

Top view of 
reconstruction

Figure 11. Reconstruction models.
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Figure 12. Experimental setup for estimating location dependency.

Table 2. 2D method: Location dependency of RMSE ×10−4. Summa-
tions of errors with/without z-compensation are 50.5 and 37.3.

-40 -20 0 20 -40 -40 -20 0 20 -40
40 3.5 40 2.8
20 4.0 4.6 3.3 20 3.0 2.8 2.5
0 4.3 4.2 4.5 3.7 4.0 0 3.3 3.0 3.3 2.7 3.2

-20 3.5 3.8 3.8 -20 2.3 3.1 3.0
-40 3.3 -40 2.3

Table 3. Proposed method: Location dependency of RMSE ×10−4. Sum-
mations of errors with/without z-compensation are 21.4 and 21.1.

-40 -20 0 20 -40 -40 -20 0 20 -40
40 2.5 40 1.6
20 1.5 1.6 1.4 20 1.5 2.1 1.6
0 2.2 1.2 1.2 1.3 1.8 0 1.8 1.5 1.4 1.5 1.5

-20 1.5 1.8 1.6 -20 1.8 1.7 1.5
-40 1.8 -40 1.6

much-occluding part. Also, the curved surface object is better
performance because the object has much entropy for registra-
tion. The planer surface object has ambiguity in matching. The
human body object, however, cannot achieve better performance
than the 2D object. Figure 8 shows the difference between point
clouds captured by two sensors for the body pattern. This pattern
has significant gaps. Although the human body is easy to setup
for calibration, the accuracy of this ICP based calibration is low.
This fact shows that the ICP based calibration requires some sim-
ple calibration objects. Figure 9 shows various heat maps of each
object excepting for the body object. The low hemisphere pattern
suppresses overall errors. Figure 11 shows reconstruction models
from the calibration results of 2D with/without z-compensation
and the proposed method with z-compensation. For modeling,
z-compensation is essential. Without z-compensation, the 2D ap-
proach generates a gap in the ocher-color texture part. The differ-
ence between the 2D with z-compensation and the proposed looks
small; however, we can find the difference easily from 3D render-
ing results with different viewpoints.

The next experiments indicate positional dependences of the
proposed and competitive method. Figure 12 shows the experi-
mental condition. Firstly, we calibrated the two sensors by the
patterns at the center of the 5 grid positions. Secondly, we located
the pattern around the center position and measured the projec-
tion error between point clouds the around sensor by using the
parameters estimated at the center position. Table 2 and 3 show
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Figure 13. Relation between the number of point cloud and RMSE.
objα − n and β − n represent difference 3D calibration patterns, and
−n represents the number of capturing times.
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Figure 14. Relation between the number of iterations and RMSE. objα−n
and β−n represent difference 3D calibration patterns, and −n represents
the number of capturing times.

the positional dependences in RMSE of the 2D pattern and pro-
posed method with/without the z-compensation. Note that we use
the 3D calibration object for measuring the RMSE; thus, the er-
ror values are lower than the Table 1. The 2D method does not
minimize the error at the center, and the z-compensation works
well. The proposed method minimizes the error at the center,
while the z-compensation boost the error around the center. The
total error, however, is reduced by the z-compensation for the pro-
posed method. The proposed z-compensation compensates the
error by global parameters of a, b for easiness, but actual errors
have per-pixel distortion. The amplitude of the distortion have
convex shape around the center of imaging sensor; thus, the z-
compensation suppresses the global error, but amplitudes the spe-
cific position, i.e., the center position.

The following are detail experiments for setting parameters of
the proposed method. Figure 13 shows the relation between the
number of point clouds and RMSE. We can find that 1500-4000
points are suitable. In twice capturing case, we should more mas-
sively down-sample point clouds. The tremendous point clouds
case, i.e., over 7000 points case, the registration generates much
miss-matches and ICP does not ensure global minimum solutions;
hence, the accuracy becomes low. Note that we had tested for
three and four times capturing cases; however, the twice time ap-
proach was the peak of our method. Figure 14 shows the relation
between the number of iterations and RMSE. We can find that 2
or 3 are enough iterations. Note that objα-1 does not have enough
feature points to converge the results. Unlike the usual ICP, the
proposed method initializes the position and rotation parameters
from the blueprint. This process reduces the number of iterations.

4. CONCLUSION

In this paper, we propose an ICP based calibration method for
multiple depth sensors with z-compensation. Experimental results
show that the proposed method has higher accuracy than the 2D
pattern’s calibration approaches.

I thank Yoshiki Kusatsugu for his help of experiments.
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