
Fast Implementation of Box Filtering
Masahiro Nakamura and Norishige Fukushima∗

Nagoya Institute of Technology
Nagoya, Japan

Email: ∗fukushima@nitech.ac.jp

Abstract—In this paper, we propose fast and cache efficient box
filtering, and also fast guided filtering using our box filtering. Box
filtering is one of the smoothing filters, which computes averaged
pixel values in the kernel. Also, guided filtering is one of the
edge-preserving filters. This filtering performs multiple times of
box filterings to obtain average and variance values in the local
window. Therefore, we can use fast box filtering for accelerating
guided filtering. Experimental results show that our box filtering
is faster than the conventional implementations, and also faster
than the conventional implementation of guided filtering.

Keywords—box filtering, guided filtering, cache efficiency, ac-
celeration

I. INTRODUCTION

Box filtering is one of the smoothing filters, which compute
the averaged pixel values in the kernel. Box filtering is
often used in various applications for image processing and
computer vision. One of the application examples of box
filtering is guided filtering [1], [2].

Guided filtering is one of the applications of box filtering
and the efficient edge-preserving filters. The filtering is effec-
tive for blur or gradient regions thanks to the local linearity of
this filtering. This filtering consists of multiple times of box
filterings because of using average and variance values in the
local window centered at the target pixel. For implementing
brute-force guided filtering, which also uses brute-force box
filtering, we must iteratively allocate-and-free cache areas
every box filtering processes. This process is wasteful for
guided filtering and easily makes cache disorder. Therefore, we
implement fast box filtering, which has high cache efficiency
for multiple times of filterings. Also, we accelerate guided
filtering using our box filtering.

II. PROPOSED METHODS

A. Box Filtering

Box filtering is a simple linear filter with a square kernel,
and compute the average values in the kernel. For accelerating
the filtering, there are two algorithms; the integral image [3]
and the summed area table [4] methods. In our implementa-
tion, we use the summed area table approach with separability
of the box filtering kernel.

When r is a kernel radius, let R be a summation of
intensities in the 1× (2r+1) narrow window. The summation
in the (2r + 1) × (2r + 1) rectangular window C is also
the accumulation of intensities in the R by using separability.

CPU 0

CPU 1

(a) Parallelization of Eq. (1).

CPU 0 CPU 1

(b) Parallelization and Vectorization of Eq. (2).

Fig. 1: Diagram of implementation of proposed box filtering.

The summation R and C centered at (x, y) are computed as
follows:

R(x, y) = R(x− 1, y) + I(x+ r, y)− I(x− r − 1, y), (1)
C(x, y) = C(x, y − 1) +R(x, y + r)−R(x, y − r − 1),

(2)

where I(x, y) is a pixel value of the input image. The output
image O is normalized as follows:

O(x, y) =
1

(2r + 1)2
C(x, y), (3)

In Eq. (1) and (2), we implement parallel processing using
OpenMP for acceleration (See Fig. 1). We divide the input
image into horizontal direction in Eq. (1). We also divide the
image which computed in Eq. (1) into vertical direction, and
use vector operation with adjoining 8 pixels using AVX (Intel
Advanced Vector Extensions) in Eq. (2). In our implemen-
tation, we can parallelly deal with 8 pixels in Eq. (1) and
64 pixels in Eq. (2), because we use 4-core 8-thread CPU.
Furthermore, we fix cache areas for every filtering steps for
efficient implementation.

Algorithm 1 Guided Filtering.

1: averageJ = fbox(J, r)
averagep = fbox(p, r)
corrJ = fbox(J. ∗ J, r)
corrJp = fbox(J. ∗ p, r)

2: varJ = corrJ − averageJ . ∗ averageJ
covJp = corrJp − averageJ . ∗ averagep

3: a = covJp./(varJ + ϵ)
b = averagep − a. ∗ averageJ

4: averagea = fbox(a, r)
averageb = fbox(b, r)

5: q = averagea. ∗ J + averageb

TABLE I: Number of box filterings in guided filtering.

Src Guide Number of times

Gray Gray 6
Color 17

Color Gray 18
Color 51

B. Guided Filtering

Guided filtering [1], [2] is one of the efficient edge-
preserving filters, and effective for blur or gradient regions
thanks to the local linearity of this filter. We assume that output
image q is a linear transform of the guidance image J .

When the guidance image is grayscale, the output image is
computed as follows:

qi = āiJi + b̄i, (4)

āi =
1

|ω|
∑
k∈ωi

ak, b̄i =
1

|ω|
∑
k∈ωi

bk, (5)

where i and k are pixel position, ωi is sets of neighborhood
pixels around the pixel i, |ω| is the number of pixels of ωi, and
ak and bk are some linear coefficients, which define Eq. (6)
and (7), respectively. The linear coefficients are computed as
follows:

ak =

1
|ω|

∑
i∈ωk

Jipi − µkp̄k

σ2
k + ϵ

, (6)

bk = p̄k − akµk, (7)

where µk and σ2
k are the average and variance of J in ωk, p̄

is the average of input image p in ωk, and ϵ is regularization
parameter.

When the guidance image is color, a color guidance image
can better preserve the edges that are not distinguishable in
grayscale. The output image is computed as follows:

qi = āT
i Ji + b̄i, (8)

āi =
1

|ω|
∑
k∈ωi

ak, b̄i =
1

|ω|
∑
k∈ωi

bk, (9)

TABLE II: Computational times of box filtering [msec].

Gray Color
Ours 5.03 15.92

OpenCV 3.0 8.26 24.88
Integral image [3] 14.42 44.25

Brute-fource 33.70 83.78

TABLE III: Computational times of guided filtering [msec].

Src Gray Color
Guide Gray Color Gray Color
Ours 98.39 340.73 313.54 1030.03

OpenCV 122.63 398.79 374.22 1202.37

where Ji and ak represent 3×1 vectors. ak and bk are linear
coefficients, which define Eq. (10) and (11), respectively. The
linear coefficients are computed as follows:

ak = (Σk + ϵU)−1(
1

|ω|
∑
i∈ωk

Jipi − µkp̄k), (10)

bk = p̄k − aT
kµk, (11)

where Σk is the 3× 3 covariance matrix of J in ωk, and U
is a 3× 3 identity matrix.

A pseudocode is in Algorithm 1. In this algorithm, fbox
is a box filtering with a kernel radius r. The abbreviations of
correlation (corr), variance (var), and covariance (cov) indicate
the meaning of these variables.

The average and variance using guided filtering are com-
puted by box filtering. TABLE I shows the number of times
of box filtering, which performs in guided filtering process.
When we implement guided filtering using the conventional
box filtering, we must iteratively allocate-and-free cache areas
every box filtering processes. This process is wasteful of
processing time and easily makes cache disorder. In our
implementation, we allocate cache areas using box filtering
only once before the process of guided filtering and fix those
cache areas. Therefore, we can reduce processing times which
allocate-and-free cache areas every box filtering processes.
Also, we can perform high cache efficiency box filtering and
guided filtering because cache areas do not disorder.

III. EXPERIMENTAL RESULTS

In the experiments, we compare our implementation with
conventional implementations. The input and guidance images
whose resolution is 2268×1512 are grayscale or color images.
The kernel size which uses box filtering is 21 × 21. Note
that the computational time does not depend on kernel radius.
We have implemented our proposed and competition methods
written in C++ with Visual Studio 2013 on Windows 10 64bit.
The CPU for the experiment is 3.40 GHz Intel Core i7-6700
(4-core 8-thread).

TABLE II shows the computational times of each box fil-
tering. We compare our proposed box filtering with three con-
ventional methods. The conventional methods are the OpenCV
3.0’s implementation, integral image implementation [3] and
brute-force implementation. The proposed box filtering is

(a) Input image. (b) Guided filter.

Fig. 2: Zoomed result of our guided filtering.

faster than the conventional methods in both grayscale and
color image.

TABLE III shows the computational times of brute-force
guided filtering using proposed box filtering and using
OpenCV 3.0’s box filtering. We compare with a total of four
types of grayscale and color image as input and guidance
images. The guided filtering using our box filtering is faster
than using OpenCV 3.0’s box filtering. Fig. 2 shows the
filtering result of our proposed guided filtering. Our method
preserves edge and also flat regions.

IV. CONCLUSION

In this paper, we proposed fast box filtering implementation,
which has high cache efficiency and also proposed fast guided
filtering using our box filtering. Proposed box filtering used
the summed area table approach [4] with separability of
the filtering kernel, and vector operation using AVX. In the
implementation of guided filtering, we allocated and fixed
cache areas using box filtering before the process of guided
filtering. Experimental results showed that our box filtering
was faster than the conventional methods, and brute-force
guided filtering using our box filtering was faster than using
OpenCV 3.0’s box filtering.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP15K16023.

REFERENCES

[1] K. He, J. Shun, and X. Tang, “Guided image filtering,” in Proc. European
Conference on Computer Vision (ECCV), 2010, pp. 1–14.

[2] ——, “Guided image filtering,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 35, no. 6, pp. 1397–1409, 2013.

[3] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2001, pp. 511–518.

[4] F. C. Crow, “Summed-area tables for texture mapping,” in Proc. ACM
SIGGRAPH, 1984, pp. 207–212.

