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ABSTRACT

In this paper, we propose an infinite impulse response (IIR)
filtering with complex coefficients for Euclid distance based
filtering, e.g. bilateral filtering. Recursive filtering of edge-
preserving filtering is the most efficient filtering. Recursive
bilateral filtering and domain transform filtering belong to
this type. These filters measure the difference between pixel
intensities by geodesic distance. Also, these filters do not
have separability. The aspects make the filter sensitive to
noises. Bilateral filtering does not have these issues, but it is
time-consuming. In this paper, edge-preserving filtering with
the complex exponential function is proposed. The resulting
stack of these IIR filtering is merged to approximated edge-
preserving in FIR filtering, which includes bilateral filtering.
For bilateral filtering, a raised-cosine function is used for ef-
ficient approximation. The experimental results show that the
proposed filter, named IIR bilateral filter, approximates well
and the computational cost is low.

Index Terms— bilateral filter, IIR bilateral filter, edge-
preserving filter, complex exponential coefficient, recursive
filter

1. INTRODUCTION

Edge-preserving filtering plays an essential role in image pro-
cessing and computer vision. The representative is bilateral
filtering [1, 2]. The bilateral filter is a finite impulse response
(FIR) filter, which is composed of a spatial kernel and a range
kernel. Both kernels measure the distance between a current
pixel and reference pixels as a Gaussian distribution.

Acceleration of the bilateral filter is an important topic.
The computational complexity of a general 2D-FIR filtering
per pixel is O(r?), where 7 is a kernel radius, and also the
bilateral filter is, too. This property exponentially increases
the computational cost when we need a large kernel or global
kernel (whole image) for filtering. For example, following ap-
plications requires large or global kernel; high dynamic range
imaging [3], alpha matting [4, 5], haze removing [6], depth
map hole filling [7, 8] and stereo matching [9].

There are various approximations for acceleration of bi-
lateral filtering. The separable approximation approaches [10,
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11] reduce the computational order into O(r). Constant time
approaches [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] is also pro-
posed. The order of these filters is O(1) per pixel. These
approaches are extended to the optimization solver [22].

For acceleration of edge-preserving filtering, which does
not limit bilateral filtering, several methods are proposed.
Guided image filtering [4, 23] is constructed from multiple
box filtering, which is O(1) filtering and is a FIR filter. Fast
global image smoothing filtering [24], which is an accelera-
tion method of weighted least square filtering [25], and is a
global filter. Domain transform filtering [26] and recursive
bilateral filtering [27] is a recursive implementation of infinite
impulse response (IIR) based filtering.

The IIR based filtering is one of the fastest edge-preserving
filters thanks to the cache efficiency and the capability of
parallelization. The conventional IIR filters of the domain
transform filtering and the recursive bilateral filtering require
geodesic distance for the range kernel, while bilateral filter-
ing requires Euclid distance. Also, these filters do not have
separability for their kernels. The geodesic distance and non-
separable kernel make filters too sensitive to noise; thus, the
response of the filtering output is not stable for noisy regions.

We proposed an IIR edge-preserving filtering with com-
plex exponential coefficients for constructing a filter with Eu-
clid (or Minkowski) distance based arbitrary range kernel and
separable kernel. Also, we efficiently approximate bilateral
filtering by using a raised-cosine function. We named this
filter as IIR bilateral filtering. The main contribution of this
paper is bridging the two types of filters, which are Euclid
based filtering, e.g. bilateral filtering and geodesic based fil-
tering, recursive bilateral filtering, in the IIR filtering domain.

2. COMPLEX COEFFICIENT FOR IIR FILTER

2.1. FIR and IIR Filter

1D FIR filtering over all signals can be represented as:
N

Jp = ZWq,pr ey

q=1

where J), I, is output and input pixel value, respectively, and
D, q are pixel location. W, ,, is a weight between pixel p and
q and N is the number of pixels in the filtering kernel. In this
case, NNV is the same value as the number of input signals. All
J, W, I are real numbers € R or complex numbers € C. Note
that this equation is non-normalized version.



For IIR representation, we assume that the weight W sat-
isfies following assumptions:

Wyp =1, 2)
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With this assumption, Eq. (1) can be decomposed into left-
side filtering .J,, L and right—side ﬁltering Iy R
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We firstly focus the left-side filtering. The left-side filtering

can be represented as first order, second order, ..., n-th order
representation:
p p—1
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For the right-side case, we represent the filter as anti-causal
way of the left-side filtering. After left-to-right and right-to-
left filtering, both results are summed for obtaining the result.

In the case of bilateral filtering, we have a spatial ker-
nel S and a range kernel R. A weight W, , = Rq,Sqp
is defined as a multiplication of two Gaussian distributions
Ryp = eXp(_g%%Uq_IpP)» g.p = €xP( el >lg — pl?). Note
that the bilateral filter does not satisfy the assumptions of the
weight (Eq. (2, 3)); thus, we extend this IIR representation for
the bilateral filtering in Section 3.

2.2. 2D Filtering and Normalization

We can use separable filtering for 2D case under the assump-
tion of Eq. (2, 3). We firstly filter horizontally and then verti-
cally. Gaussian filtering is separable, and also complex expo-
nential range kernel filtering is separable; thus, out separable
filtering does not require approximation. Filtering with real
number coefficients does not have the separable capability.

For image filtering, normalization is usually required. The
normalized FIR filtering is:

N
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The main difference of the upper and downer part of filter-
ing is I, and 1. Thus, for efficient implementation, we use a
vector of homogeneous coordinates K, = (I ,1) for filter-
ing input instead of using the image I,,. Then, the division of

elements in the smoothed result is performed:
N
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Jp = K4(0)/K,(1). (10)
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In this paper, we discuss only 1D filtering without anti-causal
way of the left-side filtering due to the page limit.
2.3. Weight Definition
Under the assumption of Eq. (2, 3), the weight W, , is defined
by total product of the weight of adjoining pixels:
p—1
Wao=WaanWorgiz- - Wo2pa Wy p= [ [Wijer (D)

Jj=q
We present two representations of this weight in this section.

2.3.1. Real number weight for range kernel

We set the relation between the nearest pixels as a bilateral-
like kernel, which satisfies the assumption of Eq. (2, 3):
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In this case, W), 4is defined as:
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The distance of the range kernel between p and q is total prod-
uct of exponential functions so that the kernel representation
expands total sum in a exponential function form the formula:
IL, exp(xy,) = exp(>_,, ). The distance of Eq. (11) be-
longs to a geodesic distance. Note that the spatial kernel is
not the Gaussian distribution, but the Laplace distribution.
This filter is easy to extend joint filtering [28, 29] by using
guidance image G instead of I for range kernel computation.
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2.3.2. Gaussian distribution for spatial kernel

The Gaussian distribution does not satisfy the assumption of
Eq. (3), however, there are several approximation approaches
in IIR filtering [30, 31, 32, 33, 34]. A recursive system of IIR
filtering for general space-invariant filtering is usually repre-
sented as:

)= > (bryizk (16)

where y is output and x is input. m is the number of taps. a, b
are coefficients of the taps. We should set appropriate coef-
ficients a, b for the Gaussian distribution. For detail setting,
please see Appendix, which presents implementations of the
first/seconder order IIR Gaussian filter.
Plugging the IIR representation into the assumption of
Eq. (3), we obtain IIR filtering with spatial and range kernel:
m—1 m
JpL = Z(alRp,p*lefl) -
1=0 k=1
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When we set Gaussian distribution for spatial adjoint kernel,
Sn,n+1, this equation is the same as the recursive bilateral
filter [27].

2.3.3. Complex number weight for range kernel
Let we introduce the imaginary number j = 1/—1 for coeffi-

cients to represent another kind of kernel. We use a complex
exponential function for the range adjoint weight:

(_j(IP — P+1)).

Oy

Ry i1 = exp (18)
Note that we use just a subtraction, not an absolute or square
difference, for intensity difference. Also, we do not extend [
(or ) to complex numbers; thus I is real number.

Plugging in the Eq. (18) into Eq. (11), we can obtain the
following range kernel:
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Total product becomes a subtraction. Comparing with Eq. (13),
this function does not use the geodesic distance. With this
kernel, we can measure differences by using the Euclid dis-
tance with trigonometric functions (See Section 3.1).

3. EXTENSION FOR BILATERAL FILTERING
3.1. Fourier Series Decomposition for Arbitrary Kernel

Separating the real and imaginary part from the complex ex-

ponential kernel filtering in Eq. (17), we obtain result of fil-

tering with trigonometric range weight, which are sin and cos
I,—1 I, —1

R;, = cos(——2), Ry | = sin(———F).

qp o, o,

ey

The theory of Fourier series decomposition, we can con-
struct an arbitrary function f whose argument is relative vari-
able of o from the trigonometric function:

Ryp=1( ):ao—i—Zancos(Q?Tﬂaﬁ)+anin(2?7ﬂ$), (22)
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where «,, 3, are coefficients for Fourier series decomposi-
tion and x = I, — I,,. sin and cos filtering result is obtained
From the Eq. (eq:sincos). With the limited number of trigono-
metric functions, we can approximate an arbitrary function,
e.g. Gaussian.

3.2. Raised-Cosine Approximation
For the Gaussian function, more effective approximation is
presented. We use a raised-cosine function for the approxi-
mation introduced by the paper [18].

The raised-cosine in the range 7" is represented as:

cosM ( ?

W) (-T<z<T).

(23)
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Fig. 2: PSNR w.r.t M. 05 1is 9 and o, is from 20-100.
The function is converging to the Gaussian function with the
limiting value of M: )
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Applying the binomial theorem with Euler’s formula cos 6§ =
el? + e73% we can approximate the Gaussian function with
the limited number of coefficients M:

[T MM . o
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22
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where x = I, — I,.

Figure 1 shows the approximated Gaussian. The raised-
cosine function can approximate the Gaussian function with
fewer coefficients than the Fourier series decomposition.

4. EXPERIMENTAL RESULT

We evaluate the proposed method of IIR bilateral filtering
(IBF) by using “Kodak Lossless True Color Image Suite”
dataset. We use Intel Xeon X5690 3.47 GHz (dual-CPU—
24 thread). The code is written in C++ (Visual Studio 2013),
and OpenMP is used for parallelization.

Figure 2 shows PSNR between the IBF and the ground
truth. The ground truth is generated by the brute-force bilat-
eral filter whose kernel radius is 30s. The resulting PSNR is
the average of 24 images in the dataset. When o, is small, we
need more coefficients. Also, if we have enough coefficients,
increasing PSNR per the number of coefficients is few.

Figure 3 shows computational time w.r.t M. The compu-
tational cost is linearly related to M. In the small coefficient
case, the IBF has real-time performance.

Figure 4 shows the results of IBF and recursive bilateral
filtering (RBF) [27], which is given in Sec 2.2.1. RBF looks
smoother than IBF with the same parameters. Table 1 shows
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Fig. 3: Computational time w.r.t M.

Fig. 4: Filtering results of RBF (left) and IBF (right). The
parameter is o, = 50, o5 = 50.

the PSNR w.r.t various o,.,0s. RBF is not an approximation
of bilateral filtering, so that approximation accuracy is low
when both o, and oy is large. On the contrary, IBF approxi-
mates well excepting for the small o, case.

Figure 5 visualizes impulse responses of each filter. In
the “Lenna” image overlaid dark cross lines, RBF, which
uses geodesic distances, cannot travel the path of cross lines,
while IBF, which uses Euclid distances, can pass. In the
13-th“Kodak” image of a high-frequency region, RBF cannot
cover the region well due to non-separability and usage of
geodesic distances, but the IBF can.

5. CONCLUSION

We introduce complex exponential coefficients for IIR filter-
ing to represent the Euclid distance based filtering, e.g. bi-
lateral filtering. We named this filter IIR bilateral filtering.
Thanks to the raised-cosine function, we can approximate bi-
lateral filtering with the fewer number of coefficients.
Limitation of IIR bilateral filtering is that loss of signif-
icant digits is critical when the order of IIR filtering is high.
Even the second order approximation with small o, makes the
loss, so that we need robust IIR systems for this problem. In
addition, this representation does not support color filtering;
thus we will extend this work to color filtering by using [21].

Appendix: IIR Gaussian Filter

In this section, we show coefficient of the first order (Eq. (27))
and second order (Eq. (28)) IIR Gaussian filtering:

Yp = A0Tp + Yp—1 27
Yp 1= QoTp + a1Tp—1 — b1Yp—1 — baYp—2 (28)

Table 1: PSNR of RBF (left) and IBF (right) w.r.t o4 and o..
The number of coefficients M=8.
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Fig. 5: Visualized kernel of RBF (left) and IBF (right). Each
filtering parameter of o ando,. is same. Note that the upper
images are overlaid by dark cross lines. The images and ker-
nels are cross dissolving with 1 : 1 ratio.

First order Alvarez—-Mazorra’s IIR Gaussian filter
Alvarez—Mazorra’s Gaussian approximation [31] is:

1422 — /(144X
ap = LFRZ VA 29)

A= ¢ 2K (30)
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where K is the number of iterations. If we need more it-
eration, the filtering result becomes the iteration of bilateral
filtering. We use K = 1, in this paper.

Second order Deriche’s IIR Gaussian filter

The Deriche’s second order Gaussian filter [30] is:

ao = (1 —¢p)?/(1+3.390cy/0s — c1) (32)

a1 = (1.695/05 — 1)coag (33)
bl = —200 (34)
by = cy, (35)

where ¢y = exp(—1.695/05),c1 = exp(—3.390/0).
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