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Abstract. We extend guided image filtering for high-dimensional sig-
nals. The guided image filter is one of edge-preserving filtering, and vari-
ous applications are proposed with the filter. The guided image filter can
compute in constant time, which means that the computational time is
constant to the size of the filtering kernel. The filter assumes the lo-
cal linear model in each kernel. The local linear model and constant
time property are convenient for various applications. The guided im-
age filter, however, suffers from noises when the kernel radius is large.
The noises are caused by violating a local linear model. Moreover, un-
expected noises and complex textures often deteriorate the condition of
the local linearity. Therefore, we propose high-dimensional guided image
filtering to overcome the problems. Our experimental results show that
our high-dimensional guided image filtering and a novel framework which
utilize the high-dimensional guided image filtering can work robustly and
efficiently for various image processing.

1 Introduction

Edge-preserving filtering has recently attracted attention and becomes funda-
mental tool in image processing. The filtering techniques such as bilateral fil-
tering [3, 32, 35] and guided image filtering [18] are used for various applica-
tions including image denoising [5], high dynamic range imaging [9], detail en-
hancement [4, 11], flash/no-flash photography [28, 10], up-sampling/super res-
olution [24], depth map denosing [25, 15], guided feathering [18, 23] and haze
removing [20].

A representative formulation of edge-preserving filtering is weighted aver-
aging, i.e., finite impulse response (FIR) filtering, based on space and color
weights that are computed from distances among neighborhood pixels. When
the distance and the weighting function are Euclidean and Gaussian respec-
tively, the formulation becomes the bilateral filter [35], which is a representative
edge-preserving filter. The bilateral filter has useful properties but is known as
time-consuming; thus, a number of acceleration methods have been actively pro-
posed [29, 30, 38, 27, 6, 37, 14, 33]. As the other formulation, there is a formulation
using geodesic distance. The representative examples are domain transform fil-
tering [16] and recursive bilateral filtering [36, 39]. They are formulated as infinite
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(a) Guidance (b) Binary mask (c) Guided image filtering

(d) Non-local means (e) 6-D HGF (f) 6-D HGF with CGF

Fig. 1: Guided feathering results. (c) contains noises around object boundaries,
while our results (e) and (f) can suppress such noises.

impulse response (IIR) filtering and represented by the combination of horizon-
tal and vertical 1D filtering. These methods, therefore, can efficiently smooth
images.

The guided image filter [18, 19], which is one of the efficient edge-preserving
filters, has a different assumption from the previously introduced filtering meth-
ods. The guided image filter assumes a local linear model in each local kernel.
Its property is convenient and essential for several applications in computa-
tional photography [9, 28, 24, 18, 20]. Furthermore, the guided image filter can
efficiently compute in constant time, which means that the computational cost
is independent of the size of filtering kernel. This fact is also useful for fast vi-
sual corresponding problems [21]. The local linear model is, however, violated by
unexpected noises such as Gaussian noises and multiple kinds of textures. Such
situation often happens when the size of the kernel is large. Then, the resulting
image may contain noises. Figure 1 demonstrates feathering [18]. The result of
guided image filtering (Figure 1 (c)) contains noises around border of the object.

For noise-robust implementation, a number of studies employed patch-wise
processing such as non-local means filtering [5] and DCT denoising [40, 13].
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Patch-wise processing gathers intensity or color information in each local patch
to channels or dimensions of a pixel. In particular, non-local means filtering
obtains filtering weights from the gathered information between target and ref-
erence pixels. Since patch-wise processing utilizes the richer information, it can
robustly work for noisy information compared to pixel-wise processing. The ex-
tension has been also discussed as high-dimensional representation such as high-
dimensional Gaussian filtering [2, 1, 17, 14]. However, these previous filters for
the high-dimensional signals cannot support guided image filtering. Figure 1 (d)
shows the result of non-local means filtering that is extended to joint filtering
for feathering. The result has been over-smoothed because of the loose of the
characteristic of the local linearity.

Therefore, we propose a high-dimensional extension of guided image filtering
for obtaining robust property. We call the extension as high-dimensional guided
image filtering (HGF). We firstly extend the guided image filtering so that the
filter can handle high-dimensional information. In this regard, letting d be the
number of dimensions of the guidance image, the computational complexity of
HGF becomes O(d2.807···) as pointed in [17]. Consequently, we also introduce a
dimensionality reduction technique for HGF to suppress the computational cost.
Furthermore, we introduce a novel framework for HGF, named as combining
guidance filtering (CGF). The novel framework builds a new guidance image by
combining the HGF output with the guidance image, and then re-executes HGF
using the combined guidance image. This framework exploits the characteristics
of HGF that can utilize high-dimensional information, and can give the more
robust performance to HGF. Figures 1 (e) and (f) indicate our results. Our HGF
suppresses the noises, and HGF with CGF further improves the noise problem.

Note that this paper is an extension version of our conference paper [12]. The
main extended part is proposed part of the CGF and associated experimental
results.

2 Related Works

We discuss several acceleration methods of high-dimensional filtering in this
section.

Paris and Durand [27] introduced the high-dimensional space, called as the
bilateral grid [7], that is defined by adding the intensity domain to the spatial
domain. We can obtain edge-preserving results by linear filtering on the bilateral
grid. The bilateral grid is, however, computationally inefficient because the high-
dimensional space is huge. As a result, the bilateral grid requires down-sampling
of the space for efficient filtering, but the computational resource and the mem-
ory footprints are expensive especially when the dimension of guidance informa-
tion is high. The Gaussian kd-trees [2] and the permutohedral lattice [1] focus
on representing the high-dimensional space with point samples to overcome the
problems. These methods have succeeded to alleviate the computational com-
plexity when the filtering dimension is high. However, since these works still
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require a significant amount of calculation and memory, they are not sufficiently
for real-time applications.

The adaptive manifold [17] is a slightly different approach. The three meth-
ods described above focus on how represents and expands each dimension. By
contrast, the adaptive manifold samples the high-dimensional space at scattered
manifolds adapted to the input signal. This fact means that the method avoids
that pixels are enclosed into cells to perform barycentric interpolation. This
property enables us to compute a high-dimensional space efficiently and reduces
the memory requirement. The property is the reason that the adaptive mani-
fold is more efficient than other high-dimensional filtering methods [27, 2, 1]. On
the other hand, the accuracy is lower than them. The adaptive manifold causes
quantization artifacts depending on the parameters.

3 High-Dimensional Guided Image Filtering

We introduce our high-dimensional extension techniques for guided image fil-
tering [18, 19] in this section. We firstly extend the guided image filtering to
high-dimensional information. Next, a dimensionality reduction technique is in-
troduced for efficient computing. We finally present combining guidance filtering,
which is a new framework for HGF, to further suppress noises caused by violation
of the local linear model.

3.1 Definition

Guided image filtering assumes a local linear model between an input guidance
image I and an output image q. The assumption of the local linear model is
also invariant for our HGF. Let J denote a n-dimensional guidance image. We
assume that J is generated from the guidance image I using a function f :

J = f(I). (1)

The function f constructs a high-dimensional image from the low-dimensional
image signal I; for example, the function is utilizing square neighborhood cen-
tered at a focusing pixel, discrete cosine transform (DCT) or principle compo-
nents analysis (PCA) of the guidance image I.

HGF utilizes this high-dimensional image J as the guidance image; thus, the
output q is derived from a linear transform of J in a square window ωk centered
at a pixel k. When we let p be an input image, the linear transform is represented
as follows:

qi = aTk Ji + bk. ∀i ∈ ωk. (2)

Here, i is a pixel position, and ak and bk are linear coefficients. In this regard, Ji
and ak represent n× 1 vectors. Moreover, the linear coefficients can be derived
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by the solution used in [18, 19]. Let |ω| denote the number of pixels in ωk, and
let U be a n× n identical matrix. The linear coefficients are computed by:

ak = (Σk + εU)−1(
1

|ω|
∑
i∈ωk

Jipi − µkp̄k) (3)

bk = p̄k − aTkµk, (4)

where µk and Σk are the n× 1 mean vector and the n× n covariance matrix of
J in ωk, ε is a regularization parameter, and p̄k(= 1

|ω|
∑
i∈ωk

pi) represents the

mean of p in ωk.
Finally, we compute the filtering output by applying the local linear model to

all local windows in the whole image. Note that qi in each local window including
a pixel i is not same. Therefore, the filter output is computed by averaging all
the possible values of qi as follows:

qi =
1

|ω|
∑
k:i∈ωk

(akJi + bk) (5)

= āTi Ji + b̄i, (6)

where āi = 1
|ω|

∑
k∈ωi

ak and b̄i = 1
|ω|

∑
k∈ωi

bk.

Computational time of HGF does not depend on the kernel radius that is
the inherent ability of guided image filtering. HGF consists of many times of box
filtering and per-pixel small matrix operations. The box filtering can compute in
O(1) time [8], however, the number of times of box filtering linearly depends on
the dimensions of the guidance image. Also, the order of the matrix operations
depends on exponentially in the dimensions.

3.2 Dimensionality Reduction

For efficient computing, we utilize PCA for dimensionality reduction. The di-
mensionality reduction technique has been proposed in [34] for non-local means
filtering or high-dimensional Gaussian filtering. The approach aims for finite im-
pulse response filtering with Euclidean distance. We extend the dimensionality
technique for HGF.

For HGF, the guidance image J is converted to new guidance information
that is projected onto the lower dimensional subspace determined by PCA. Let
Ω be a set of all pixel positions in J . To conduct PCA, we should firstly compute
the n× n covariance matrix ΣΩ for the set of all guidance image pixel Ji. The
covariance matrix ΣΩ is computed as follows:

ΣΩ =
1

|Ω|
∑
i∈Ω

(Ji − J̄)(Ji − J̄)T , (7)

where |Ω| and J̄ are the number of all pixels and the mean of J in the whole
image, respectively. After that, pixel values in the guidance image J are projected
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(a) Input (b) 1st dimension (c) 2nd dimension

(d) 3rd dimension (e) 4th dimension (f) 5th dimension

Fig. 2: PCA result. We construct the color original high-dimensional guidance
image from 3 × 3 square neighborhood in each pixel of the input image. We
reduce the dimension 27 = (3× 3× 3) to 5.

onto d-dimensional PCA subspace by the inner product of the guidance image
pixel Ji and the eigenvectors ej (1 ≤ j ≤ d, 1 ≤ d ≤ n, where d is a constant
value) of the covariance matrix ΣΩ . Let Jd be a d-dimensional guidance image,
then the projection is performed as:

Jdij = Ji · ej , 1 ≤ j ≤ d, (8)

where Jdij is the pixel value in the j-th dimension of Jdi , and Ji · ej represents
the inner product of the two vectors. We show an example of the PCA result of
each eigenvector e in Fig. 2.

In this way, we can obtain the d-dimensional guidance image Jd. This guid-
ance image Jd is used by replacing J in Eqs. (2), (3), (5), and (6). Moreover,
each dimension in Jd can be weighed by the eigenvalues λ, where is a d × 1
vector, of the covariance matrix ΣΩ . Note that the eigenvalue elements from the
(d+ 1)-th to n-th are discarded because HGF only use d dimensions. Hence, the
identical matrix U in Eq. (3) can be weighted as to the eigenvalues λ. Then, we
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take the element-wise inverse of the eigenvalues λ:

Ed = Uλinv (9)

=


1
λ1

. . .
1
λd

 , (10)

where Ed represents a d × d diagonal matrix, λinv represents the element-wise
inverse eigenvalues, and λx is the x-th eigenvalue. Note that we take the loga-
rithm of the eigenvalues λ depending on applications and normalize the eigen-
value based on the 1st eigenvalue λ1. Taking the element-wise inverse of λ is to
use the small ε for the dimension having the large eigenvalue as compared to the
small eigenvalue. The reason is that the elements of λ satisfy λ1 ≥ λ2 ≥ · · · ≥ λd,
and the eigenvector whose eigenvalue is large is more important. As a result, we
can preserve the characters of the image in the principal dimension.

Therefore, we can obtain the final coefficient ak instead of using Eq. (3) in
the case of high-dimensional case as follows:

ak = (Σd
k + εEd)

−1(
1

|ω|
∑
i∈ωk

Jdi pi − µdkp̄k), (11)

where and µdk and Σd
k are the d×1 mean vector and the d×d covariance matrix

of Jd in ωk.

3.3 Combining Guidance Filtering

Our extension of the HGF can utilize high-dimensional signals. In other words,
HGF can use multiple single-channel images as the guidance information by using
the function f as merging multiple image channels. By utilizing this property and
extending HGF, we present a novel framework—named as combining guidance
filtering (CGF).

The overview of CGF is shown in Fig. 3. Our CGF contains three main
steps; (1) computing a filtered result using initial guidance information J (0), (2)
generating new guidance information J (t) by combining the filtered result q(t)

with the initial guidance information J (0), and (3) re-executing HGF using the
combined guidance image J (t). Here, the steps (2) and (3) are repeated, and t
represents the number of iterations. According to our preliminary experiments,
2–3 iterations is appropriate to obtain adequate results. Note that the filter-
ing target image is not changed from the initial input image for avoiding an
over-smoothing problem. This framework works well in recovering edges from
additional guidance information as guided feathering [18]. It results from the
fact that the additional guidance information is not discarded and is added to
new guidance information. Moreover, the filtered guidance image added to new
guidance information plays an important role to suppress noises.

Our CGF framework is similar to the framework of rolling guidance image
filtering proposed by Zhang et al. [41]. The rolling guidance image filtering is
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Fig. 3: Overview of CGF using our HGF. This figure shows the case of d = 3,
i.e., the initial guidance images are three.

iterative processing with the fixed input image and the updated guidance. The
rolling guidance image filtering is limited to direct filtering, i.e., the filter is
not utilized joint filtering, such as feathering. Thus, their work aims at image
smoothing to remove detailed textures. On the other hand, ours work can deal
joint filtering and mainly aims at edge recovery from additional guidance infor-
mation.

4 Experimental Results

In this section, we evaluate the performance of HGF concerning efficiency and
also verify the characteristics by using several applications. Note that we use
GF for representing the conventional guided image filter [18, 19] in this section.
In our experiments, each pixel of high-dimensional images J has multiple pixel
values that consist of a fixed-size square neighborhood around each pixel in
original guidance image I. Note that the dimensionality is reduced by the PCA
approach discussed in Sec. 3.2.

We firstly reveal the processing time of HGF. We have implemented our
proposed and competition methods written in C++ with Visual Studio 2010
on Windows 7 64 bit. The code is parallelized by OpenMP. The CPU for the
experiments is 3.50 GHz Intel Core i7-3770K. The input images whose resolution
is 1-megapixel, i.e., 1024× 1024, are grayscale or color images.

Figure 4 shows the result of the processing time. The processing time of
HGF exponentially increases as the guidance image dimensionality becomes
high. From this cost increasing result, the dimensionality reduction is essen-
tial for HGF. Also, the computational cost of PCA is small as compared with
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Fig. 4: Processing time of high-dimensional guided image filtering with respect
to guidance image dimensions.

the increase of the filtering time by increasing the dimensionality. Therefore,
although the computational cost becomes high by increasing the dimensionality,
the problem is not significant. Tasdizen [34] also remarked that the performance
of the dimensionality reduction peaks at around 6. The fact is also shown in
following our experiments.

Figure 5 shows the result of the dimension sensitivity of HGF. Note that
we obtain the binary input mask by using GrabCut [31]. We can improve the
edge-preserving effect of HGF by increasing the dimension. The amount of the
improvement is, however, slight in the case of over 10-D. Thus, we do not need
to increase the dimension.

Next, we discuss the characteristics between GF and HGF. As mentioned in
Sec. 1, GF can transfer detailed regions such as feathers, but it may cause noises
near the object boundary at the same time (see Fig. 1 (c)). By contrast, HGF
can suppress the noises while the detailed regions are transferred as shown in
Fig. 1 (e). The noise suppression ability can be further improved by CGF as
shown in Fig. 1 (f). Note that we apply 2 iterations for CGF, i.e., we set t = 2.
Therefore, we can apply CGF if we hope the better results.

We also show the detailed results of guided feathering and alpha matting in
Fig. 6. The whole guidance images and initial masks used in this experiment
are the same in Fig. 5. The result of guided image filtering causes noises and
color mixtures near the object boundary. HGF can alleviate these problems and
suppress noises and color mixtures. However, some noises and blurs remain near
the object boundary. These problems can improve by applying CGF. The result
of HGF with CGF further suppress noises and has clear boundaries compared
to the other methods as shown in Fig. 6 (c).

Figure 7 shows the image abstraction results. Note that the result takes 3
times iterations of filtering. As shown in Figs. 7 (b) and (d), since the local
linear model is often violated in filtering with large kernel, the pixel values are
scattered. On the other hands, HGF can smooth the image without such problem
(see Figs. 7 (c) and (e)).
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(a) Guidance image (b) Binary mask

(c) 3-D HGF (d) 6-D HGF

(e) 10-D HGF (f) 27-D HGF

Fig. 5: Dimension sensitivity. The color patch size for high-dimensional image is
3× 3, i.e., the complete dimension is 27. The parameters are r = 15, ε = 10−6.

HGF also has excellent performance for haze removing [20]. The haze remov-
ing results and the transition maps are shown in Fig. 8. In the case of GF, the
transition map preserves major textures while there are over-smoothed regions
near the detailed regions or object boundaries, e.g., between trees or branches.
The over-smoothing effect affects the haze removal in such regions. In our case,
the transition map of HGF preserves such detailed texture; thus, HGF can re-
move the haze better than GF in the detailed regions. For these results, HGF is
effective for preserving the detailed areas or textures.

As the other application for high-dimensional guided image filtering, there
is an image classification with a hyperspectral image. The hyperspectral image
has various wavelength information, which is useful for distinguishing different
objects. Although we can obtain a good result by using support vector machine
classifier [26], Kang et al. improved the accuracy of image classification by
applying guided image filtering [22]. They made a guidance image using PCA
from the hyperspectral image, but most of the information was unused because



Extending Guided Image Filtering for High-Dimensional Signals 11

(a) GF

(b) 6-D HGF

(c) 6-D HGF with CGF

Fig. 6: Guided feathering and matting results using different methods. The pa-
rameters are the same as Fig. 5.

GF cannot utilize the high-dimensional data. Our extension has an advantage in
such case. Since HGF can utilize high-dimensional data, we can further improve
the accuracy of classification by adding the remaining information.

Figure 9 and Tab. 1 show the result of classification of Indian Pines dataset,
which was acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor. We objectively evaluate the classification accuracy by using the three
metrics: the overall accuracy (OA), the average accuracy (AA), and the kappa
coefficient, which are widely used for evaluating classification. OA denotes the
ratio of correctly classified pixels. AA denotes the average ratio of correctly clas-
sified pixels in each class. The kappa coefficient denotes the ratio of correctly
classified pixels corrected by the number of pure agreements. We can confirm
that the HGF result achieves the better result than GF. Especially, the de-
tailed regions are improved in our method. The accuracy is objectively further
improved as shown in Tab. 1.
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(a) Input image (b) GF

(c) 6-D HGF (d) Detail of (b) (e) Detail of (c)

Fig. 7: Image abstraction. The local patch size for high-dimensional image is
3× 3. The parameters for GF and HGF are r = 25, ε = 0.042.

5 Conclusion

We proposed high-dimensional guided image filtering (HGF) by extending guided
image filtering [18, 19]. The extension allows the guided image filter to utilize
high-dimensional signals, e.g., local square patches and hyperspectral images and
obtain the robustness for unexpected textures, which is a limitation of guided
image filtering. Our high-dimensional extension has a limitation that the compu-
tational cost becomes high as the number of dimensions increases. To alleviate
this limitation, we simultaneously introduce a dimensionality reduction tech-
nique for efficient computing. Furthermore, we also presented a novel framework
named as combining guidance filtering (CGF) in this study. We have proposed
this framework to more exploits the characteristics of HGF that can utilize high-
dimensional information. As a result, HGF with CGF obtains robustness and
can further suppress noises caused by violation of the local linear model. Ex-
perimental results showed that HGF can work robustly in noisy regions and
transfer detailed regions. In addition, HGF can compute efficiently by using the
dimensionality reduction technique.
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(a) Hazy image (b) GF (c) Ours (d) GF (e) Ours

(f) Detail of (b) (g) Detail of (c)

Fig. 8: Haze removing. The bottom row images represent transition maps of (b)
and (c). The local patch size for high-dimensional image is 5×5. The parameters
for GF and HGF are r = 20, ε = 10−4.

Table 1: Classification accuracy [%] of the classification results shown in Fig. 9.
Method OA AA Kappa

SVM 81.0 79.1 78.3

GF 92.7 93.9 91.6

HGF 92.8 94.1 91.8

Acknowledgment This work was supported by JSPS KAKENHI Grant Num-
ber 15K16023.
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