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Abstract—This paper presents an acceleration method of the
bilateral filter (BF) for multi-channel images. In most existing
acceleration methods, the BF is approximated by an appropri-
ate combination of convolutions. A major purpose under this
framework is to achieve sufficient approximate accuracy by as
few convolutions as possible. However, state-of-the-art methods
for multi-channel images still requires hundreds of (e.g., 256)
convolutions to achieve sufficient accuracy. The proposed method
reduces the number of convolutions without a loss in accuracy
via soft-assignment coding. This approach enables us to take
two major advantages that two state-of-the-art methods (scalar
quantization with linear interpolation and vector quantization)
have individually provided. Experiments show that the proposed
method can produce sufficiently-accurate resulting images by
using 64–80 convolutions only.

I. INTRODUCTION

The bilateral filter (BF) [1]–[3] has played a fundamental
role as an edge-preserving smoother in image processing,
computer vision and computer graphics. The edge-preserving
effect is achieved by the following approach. Traditional linear
filters determine filter weights only from the spatial distance
between current pixel and its neighboring pixels; the BF
additionally introduces their intensity difference. Although it
was originally focuses on single-channel images, we discusses
its generalization for multi-channel ones such as RGB or
hyper-spectral images. We distinguish between them as single-
channel BF (ScBF) and multi-channel BF (McBF). The McBF
can produce more natural smoothing results (e.g., less pseudo
colors around edges) than the ScBF.

A major drawback of the BF is high computational com-
plexity. In order to overcome this problem, many accelerated
algorithms for the ScBF have been proposed in the past [4]–
[10]. Most of them approximate the ScBF by an appropriate
combination of convolutions. This framework has a tradeoff
between approximate accuracy and the number of convolu-
tions. In short, we aim at obtaining sufficient accuracy by
using as few convolutions as possible. The existing methods
for the ScBF have shown successful results in many tasks.
Likewise, accelerating the McBF has been actively studied
recent years [11]–[15]. However, they still require hundreds
of convolutions to satisfy sufficient accuracy. From a practical
viewpoint, it is demanded for real applications to drastically
reduce the number of convolutions required.

This paper presents an accelerated algorithm for the McBF

that requires much fewer convolutions. Our method utilizes
the soft-assignment coding [16], [17], which is a well-known
technique for general object recognition tasks. This approach
enables us to combine major advantages of two state-of-the-
art methods: the Yang method [13] (scalar quantization with
linear interpolation) and the Mozerov method [12] (vector
quantization). Experiments show that, as compared with the
Yang method, our method reduces the number of convolutions
by approximately 75% without a loss of accuracy.

II. EXISTING WORK

A. Multi-channel Bilateral filter

Although the original BF [1]–[3] treats single-channel im-
ages, this paper focuses on its natural extension for multi-
channel images. Let us consider filtering a D-dimensional M -
channel image with N pixels. Let f : S → R be a target
image and f̃ : S → R its smoothed image where S ⊂ ZD

and R ⊂ RM denote the spatial domain (all pixel positions)
and the range domain (possible color vectors) of the images,
respectively. By describing the current pixel as p ∈ S and its
neighboring pixels as N (p) ⊂ S , the McBF is defined by

f̃(p) :=

∑
q∈N (p) ws(p, q)wr(f(p),f(q))f(q)∑

q∈N (p) ws(p, q)wr(f(p),f(q))
, (1)

where ws : S × S → R+ and wr : R×R → R+ are called
a spatial kernel and a range kernel, respectively. The both
kernels are selected according to computational complexity,
noise model or so on. Our discussion is basically applicable
to arbitrary spatial/range kernels. We here show Gaussian
spatial/range kernels as an common example:

ws(x,y) := e
− ∥y−x∥2

2σ2
s , wr(x,y) := e

− ∥y−x∥2

2σ2
r , (2)

where σs and σr are spatial and range scale parameters, re-
spectively, and ∥·∥ denotes ℓ2-norm of a vector. An important
point is that this naive McBF has computational complexity
proportional to the filtering window size |N (p)|, which de-
pends on D and σs. In general, this theoretical characteristic
is a severe problem for real-time processing applications.

B. Accelerated bilateral filters and remaining problems

In the ScBF, many accelerated algorithms have been pro-
posed to reduce computational complexity [4]–[10]. Basically,



these algorithms share the general framework that it is approx-
imated by an appropriate combination of convolutions. Since
this framework has a tradeoff between approximate accuracy
and the number of convolutions, we aim at achieving sufficient
accuracy by as few convolutions as possible. Unfortunately,
their natural extensions to multi-channel images generally suf-
fer from the curse of dimensionality. Specifically, the number
of convolutions increases exponentially with increasing M .
This property causes unacceptable computational time even in
the case of RGB images (M = 3).

In order to address this problem, accelerations for the
McBF have been actively studied recent years [12]–[15]. All
of them mainly discussed how to simplify range domain R
because the smaller R requires the fewer convolutions in
general. Yang et al. [13] aggressively quantized R (and also
spatial domain S) by employing scalar quantization with linear
interpolation. Mozerov et al. [12] simplified R by means of
vector quantization in view of color sparseness of images.
The other approaches [14], [15] mainly approximated distance
computation in R by random projection. However, these state-
of-the-art algorithms still requires at least 100 convolutions to
achieve sufficient accuracy, even if RGB images (M = 3) are
targeted. This is because the size of R expands exponentially
with increasing M . Consequently, it is required to reduce much
more convolutions for real-time applications.

III. PROPOSED METHOD

This section presents an accelerated McBF that treats range
domain R via soft-assignment coding, which is a successful
technique for general object recognition tasks [16], [17].

A. Separable range kernel with Kronecker delta

We decompose the McBF into an appropriate combination
of convolutions by describing (2) as the separable form

wr(x,y) =
∑
t∈R

δ(x, t)wr(t,y), (3)

where δ(x,y) = [x = y] ∈ {0, 1} indicates the Kronecker
delta. Substituting (3) for (1), the McBF is rewritten as

f̃(p) =

∑
t∈R δ(f(p), t) ξt(p)∑
t∈R δ(f(p), t) ζt(p)

=
∑
t∈R

δ(f(p), t)
ξt(p)

ζt(p)
, (4)

where ξt : S → R and ζt : S → R are defined by

ξt(p) =
∑

q∈N (p)

ws(p, q) {wr(t,f(q))f(q)} , (5)

ζt(p) =
∑

q∈N (p)

ws(p, q) {wr(t,f(q))} , (6)

We call ξt(·) and ζt(·) component images corresponding to
color vector t. Obviously, they are generated by convolutions
to the M -channel image {wr(t,f(q))f(q)} and the single-
channel image {wr(t,f(q))}, respectively. If we generate the
component images to all the possible color vectors ∀t ∈ R,
(4) yields exactly the same results as (1). In terms of com-
putational complexity, it is required to reduce the number of
component images without an unacceptable loss in accuracy.

B. Soft-assignment coding of color vectors

We approximate (4) by using component images corre-
sponding to some dominant color vectors only. Moreover,
the approximate accuracy is enhanced by utilizing linear
combinations of them derived from soft-assignment coding.
Let ck ∈ R, (k = 1 . . . ,K) be dominant color vectors of a
target image where K indicates the number of dominant color
vectors. Instead of the summation of δ(·) in (4), we use the
weights derived by soft-assignment coding

αk(x) :=
exp

(
−λ ∥x− ck∥2

)
∑K

l=1 exp
(
−λ ∥x− cl∥2

) , (7)

where λ is a smoothing parameter. Then, (4) is described as

f̃(p) ≈
K∑

k=1

αk(f(p))
ξck

(p)

ζck
(p)

, (8)

Since natural images generally consist of some dominant
colors and their gradations, our method can achieve sufficient
accuracy if K is sufficiently-large. As a result, (8) contains
K(M + 1) convolutions where the number of convolutions
is counted independently for each channel (i.e. M -channel
convolution is counted as M convolutions). Note that all the
ξck

(·) and ζck
(·) are precomputed before performing (8).

C. Comparison with state-of-the-art methods

Our method outperforms the Yang method [13] in terms
of computational complexity. Conceptually, the Yang method
samples ck from in a scalar quantization manner and then
interpolate unsampled points in R from their neighboring ck.
However, an image have non-uniform color distribution in
general. In other words, we non-uniformly access R in (4)
in practice. Scalar quantization cannot exploit the tendency
of color distribution. Moreover, it suffers from the curse
of dimensionality. The Yang method contains BM (M + 1)
convolutions where B is the number of bins/channel and its
most common choice is B = 4. Evidently, this approach works
well for single-channel images [6] but shows limitation for
multi-channel images (especially for hyper-spectral images).

Our method also shows a clear advantage over the Morerov
method [12]. This method determines ck in a vector quanti-
zation manner. However, it does not provide an alternative of
interpolation between ck (i.e., hard-assignment coding). This
approach has a limitation of approximate accuracy. In order to
reveal this fact, we examine a toy problem of color reduction
using the image “lenna”. Let us consider replacing each pixel
color of the image to the linear combination

t ≈
K∑

k=1

αk(t) ck.

Figure 1 exhibits results of hard- and soft-assignment cod-
ings where we used the k-means algorithm for clustering.
The approximate accuracy between original and color-reduced
images is quantified as the peak signal-to-noise ratio (PSNR).
The two results of hard-assignment coding reveal many pseudo



(a) Input image (b) HA (K = 8) : 26.9 dB (c) HA (K = 16) : 29.7 dB (d) SA (K = 8) : 29.1 dB
Fig. 1. Color reduction of the image “lenna” where the soft-assignment coding uses λ = 0.5.

edge and texture regions even if K = 16. By contrast, the
result of soft-assignment coding preserves edges and the most
natural visual appearance. This is because soft-assignment
coding can accurately represent gradation regions composed
of some dominant colors. Evidently, these results support that
soft-assignment coding outperforms hard-assignment coding.

D. Extension to constant-time algorithms

In both the ScBF and the McBF, their acceleration algo-
rithms are easily extended to constant-time algorithms where
constant-time means that computational complexity does not
depend on filter window size (i.e. O(1) time per pixel). This
is because, if the convolutions of (5) and (6) are operated
by an constant-time filtering algorithm, it can be a constant-
time BF. In our method, (8) can be operated in constant-time
by precomputing ξck

and ζck
. For example, Gaussian spatial

kernel and box spatial kernel, which are widely-used spatial
kernels in the BF, can be convolved in constant-time such as
the integral image [18], [19], recursive filtering [20]–[22], and
short-time spectral approaches [23], [24]. Hence, our method
employs the constant-time Gaussian filter proposed in [24].

IV. EXPERIMENTS AND DISCUSSION

This section evaluates the computational complexity and the
approximate accuracy of our method through several experi-
ments using natural images. The test environment mounts on
Intel Xeon CPU 3.70GHz and 32GB main memory. All the
comparators are implemented in C++ and our implementations
do not explicitly use parallel architecture such as multicore
processing and vector computing. Test images are ”Kodak
Photo CD”, which contains 24 RGB images with the size
of 512×768 or 768×512. Note that D = 2, M = 3,
and each channel has 8-bit the dynamic range (i.e., R ∈
{0, 1, . . . , 255}M ).

Firstly, we confirm approximate accuracy of our method.
The accuracy is quantified as the PSNR between the naive
McBF of (1) and our method of (8). Figure 2 plots the
relationship between the number of convolutions and the
PSNR where the parameters (σs, σr) are (5,30), (10,30), and
(10,45). Our method achieves sufficient accuracy (i.e. 40 [dB])
at 64–80 convolutions (i.e. K = 16 to 20). Under the same
parameters and test images, the Yang method achieves almost

the same PSNR by using 256 convolutions (i.e. B = 4).
Specifically, our method can run approximately 3.5 to 4.0
times faster than the Yang method without a loss of accu-
racy. Note that the randomized approaches [14], [15] also
requires hundreds of convolutions. These results also show
that λ = 0.5

255 shows the best performance tradeoff and we can
reduce more convolutions when σr is larger.

Secondly, Fig. 3 shows the image “kodim04” in the test set
and its resulting images of the naive McBF, the Yang method,
and our method (K = 10) where all the images are zoomed
to facilitate visual assessment. The Yang method lost some
edges (see her eyes) due to scalar quantization that neglects
the color distribution. Our method more correctly preserved
edge and also flat regions than the Yang method. On the other
hand, if a target image consists of many dominant colors, both
of the Yang method and our method showed pseudo contours
of colors. How to find the correct K for each image is a
remaining problem for our method.

Lastly, we mention the computational time of the naive
McBF and our method. Under the parameters (σs, σr) =
(10, 30), the naive McBF consumed approximately 7.5 [s]; by
contrast, our method (K = 16) took less than 1.0 [s] including
clustering process. The naive McBF has the computational
time proportional to σs but our method can run at a constant
speed regardless of σs. Consequently, our method can be an
alternative of the naive McBF for many image processing
applications.

V. CONCLUSIONS

This paper presented an acceleration algorithm for the
McBF based on soft-assignment coding. Our method provided
advantages of vector quantization and linear interpolation,
which two state-of-the-art methods had individually provided.
Many existing methods required hundreds of convolutions;
by contrast, our method succeeded in reducing to 64–80
convolutions without a loss in approximate accuracy. This
performance improvement will contribute to expand the range
of applications of the McBF. Future work will generalize our
proposed ideas to multi-lateral filtering or non-local mean
filtering [25].



Fig. 2. The number of convolutions versus approximate accuracy (PSNR [dB] averaged over the 24 test images).

(a) Input image (b) Naive McBF (∞ [dB]) (c) Yang et al. (35.4 dB) (d) Ours (34.4 dB)

Fig. 3. Zoomed results of the image “kodim04”. Parameters: (b,c,d) σs = 3, σr = 30, (c) B = 4, and (d) K = 10, λ = 0.5.
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