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ABSTRACT

We propose a real-time upsampling scheme for depth maps. The
proposed scheme contains two upsampling stages; one is self-
similarity matching (SSM), and the other is predictive linear up-
sampling (PLU). SSM accelerates cost volume filtering by us-
ing a variant of joint bilateral upsampling, which utilizes high-
dimensional vectors, which is neighborhoods of an RGB image
and a depth map. The high-dimensional upsampling suppresses
edge blurring and scattering problems. PLU generates smooth
surfaces with keeping edges guided by the results of SSM. Experi-
mental results show that the proposed scheme has higher accuracy
than the state-of-the-art upsampling. Additionally, the proposed
method has real-time performance on a multi-core CPU.

Index Terms — depth map upsampling, edge-aware upsam-
pling, cost volume filtering, cost volume upsampling

1. INTRODUCTION

RGB-D camera has important for computer vision and image pro-
cessing researches. Depth sensors usually have lower-resolution
size than RGB cameras; thus, depth map upsampling is necessary.
Moreover, with subsampling, depth map upsampling is utilized for
acceleration of depth map estimation, and coding of 3D video [1].

Recently, many depth upsampling algorithms, which jointly
utilize RGB and depth images, are proposed; thus, we classify
these methods into three types based on computational complex-
ity; the upsampling type, the refinement filtering type, and the cost
volume filtering/optimization type. The upsampling type [2, 3, 4,
5, 6] is the fastest approaches among the three types. The com-
putational complexity depends on the low-resolution size SL of
depth maps, i.e., O(SL). The accuracy of these methods, how-
ever, are insufficient. Upsampled flat regions are contaminated by
transferring textures in an RGB image, and upsampled edges are
blurring or scattering due to incoherence between the RGB image
and the depth map. The refinement filtering type [5, 7, 8] miti-
gates these problems. The computational order is usuallyO (SH),
where SH is the high-resolution size of RGB images. The cost
volume filtering/optimization type [9, 10, 11, 12, 13, 14, 15] per-
forms sophisticated filters or optimizations for the cost volume
constructed from low-resolution depth maps. These algorithms
further improve accuracy, but the order is O(T · SH), where T
is the number of the depth candidates. Consequently, they are
off-line processing. Usually, upsampling is one of preprocessing;
thus, reducing computational costs is important. The upsampling
type is suitable for this purpose; however, the type has not enough
accuracy in the flat surface and the object edge regions.

∗This work was partially supported by JSPS KAKENHI Grant Number
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In this paper, we propose an accelerated method for cost vol-
ume filtering to reduce the order to O(T · SL). Instead of upsam-
pling initial depth maps before cost volume construction, a low-
resolution cost volume is built, and then the cost volume is jointly
upsampled. The proposed scheme contains two upsampling meth-
ods, named self-similarity matching (SSM) and predictive linear
upsampling (PLU). SSM upsamples a low-resolution cost volume
by high-dimensional Gaussian upsampling, which is edge-aware
upsampling with neighborhood vectors. Then, we can generate a
piecewise-flat depth map without edge blurring, texture copying,
and edge scattering problems. In addition, PLU refines the results
of SSM to have a piecewise-linear depth map. Moreover, cooper-
ating with depth map denoising, we can reduce a kernel radius and
can implement efficiently by utilizing sparsity of the cost volume.

2. RELATED WORK

In this section, we briefly review related works. Joint bilateral up-
sampling (JBU) [2] is an early work of edge-aware upsampling.
JBU utilizes a high-resolution image as guidance and then per-
forms weighted averaging by using bilateral weights from the im-
age. While JBU has a texture transferring problem, an extension
of noise-aware filtering for depth map upsampling [3] realizes ro-
bust upsampling for noises. As an acceleration, upsampling with
guided filtering [4] is one of the fastest upsampling. These ap-
proaches are low complexity; however, edge blurring is inevitable.
Recently, a weighted histogram-based approach of weighted mode
filtering [5] solves the blurring issue, and joint geodesic upsam-
pling [6], which uses geodesic distance instead of Euclidean dis-
tance, prevents mixing pixels. Both methods estimate accurate
depth maps but these methods consume computational costs; how-
ever, these approach is relatively faster than the refinement filter-
ing and the cost volume filtering/optimization types.

The refinement filtering type uses fast edge-preserving filter-
ing [4, 8] for refining pre-upsampled depth maps. Joint bilat-
eral/ trilateral filtering with a weight map [7, 16] is also proposed
for suppressing texture-transferring and edge-blurring problems.
The weighted mode filtering [5] can also solve these problems.

With the approach of the cost volume filtering/optimization
type, the cost volume is constructed from a temporally upsam-
pled depth map, and then the cost volume is filtered or optimized.
The bilateral cost volume filtering [9] aggregates costs by using
bilateral filtering. After that, we can obtain a sharp depth map by
minimizing the cost volume with a winner-takes-all manner. The
variant that uses guided filtering [10] and the general framework
of the cost volume refinement is also proposed [11]. The Markov
random field (MRF) optimization for the cost volume is firstly
proposed by [12]. Numerous approaches improve the MRF opti-
mization for depth map upsampling [13, 14, 15]. MRF approaches
are accurate but much slower than the filtering approaches.
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Figure 1. Self-similarity matching. Neighborhood pixels around a current
pixel in an RGB image and a high-resolution (HR) depth map is vector-
ized. HR depth map is temporally upsampled by bicubic. Then the vector
is compared with a vector of reference pixels at the nearest samples on a
low-resolution grid to obtain a matched value.

3. DEPTH MAP UPSAMPLING SCHEME

In this section, we present the proposed scheme of self-similarity
matching (SSM) and predictive linear upsampling (PLU). Also,
denoising for depth maps is discussed.

3.1. Self-Similarity Matching
With SSM, we search a similar patch in the high-resolution grid
of the self-image, and then we assign an almost depth value of
the matched patches to the upsampling pixel. The idea is inspired
from cost volume filtering [11, 17]. Figure 1 shows the overview
of SSM. Next, we introduce SSM according to cost volume filter-
ing manners.

LetD↓ be a low-resolution depth map. Also, let p be a current
pixel position on the high-resolution grid. The symbol of ↓ is a
downsampling operator; hence, p↓ is the relative pixel position
of p on the low-resolution grid. In a step of cost generation, a
matching cost function is defined in the low-resolution grid:

C↓p↓(d) = 1− exp(
‖D↓p↓−d‖

2
2

−2σ2
c

), (1)

where d is a depth value candidate, and ‖ · ‖2 denotes a L2 norm
operator. D↓p↓ is a depth value of the low-resolution depth map
D↓ on a pixel p↓.

Then, we upsample the low-resolution cost volume with edge-
aware aggregation. Let q and q↓ be supported pixel positions on
the high-resolution grid and the relative pixel position of q on the
low-resolution grid. Similar to joint bilateral upsampling [2]1, cost
slices in the cost volume are upsampled. Note that we use high-
dimensional Gaussian distribution [18, 19] to prevent the edge
scattering issue. To generate the high-dimensional signals, we uti-
lize patches of the RGB image and also utilize patches of the depth
map. The high-resolution cost is:

Cp(d) =
∑
q↓∈S

fSSM(p, q)C↓q↓(d), (2)

fSSM(p,q)=exp(
‖p−q‖22
−2σ2

s

) exp(
‖v(Np)−v(Nq))‖22

−2σ2
h

), (3)

1JBU is defined as: Djbu
p =

∑
q↓∈N fbiσs,σc (p, q)D↓q↓ , where fbi

is a bilateral Gaussian weight. JBU performs weighted averaging for depth
maps directly; thus, edge-blurring is inevitable.
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Figure 2. Examples of prediction of outliers samples in predictive linear
upsampling. We predict samples by using 4-NN or 16-NN pixels. In the
3-samples case, we have other three rotated cases. In the 2-sample case,
we have other three rotated cases for the line pattern, and two cases for the
diagonal pattern. In the 1-sample case, we cannot show all cases due to
the page limit.

where σs,h are control parameters for spatial and similarity Gaus-
sian distribution, respectively. Np,q are sets of neighborhood pix-
els around the pixel p, q. A vectorized function v(·) gathers pixels
in a patch of the image I and of the depth map D̂ on the high-
resolution grid. D̂ is temporally upsampled in advance by using
bicubic. For this upsampling simple and smooth upsampling is
desirable. Note that the depth values are balanced by the parame-
ter λ between the intensity of the RGB image and the depth map.
Thereby, the vector usingm neighborhoods in the RGB image and
n neighborhoods in the depth map is represented as:

v(Np) = (I1
p, I

2
p, ..., I

m
p , λD̂

1
p, λD̂

2
p, ..., λD̂

n
p)T . (4)

Finally, the resulting depth map of SSM is obtained by mini-
mizing the upsampled cost:

Dssm
p = arg min

d∈T
Cp(d), (5)

where T is a set of depth value candidates, e.g., [0:255].
The matching process of SSM completely prevents blurring

and moderates texture-copying, however, the resulting depth map
is piecewise-flat. In the next section, we refine the depth map to
be piecewise-smooth.

3.2. Predictive Linear Upsampling

In PLU, we do not use an RGB image as guidance to completely
prevent texture-transferring artifacts. In addition, we use predic-
tive linear upsampling guided by the resulting SSM to have smooth
surfaces with sharp object edges.

LetDlt
p , D

rt
p , D

lb
p , D

rb
p be depth values of the 4-nearest neigh-

borhood pixels (4-NN) for the upsampling pixel p = (x, y). In
principle, we use simple linear upsampling with the neighbor-
hoods for estimating value DPLU

p :

DPLU
p = αβDlt

p + ᾱβDrt
p + αβ̄Dlb

p + ᾱβ̄Drb
p , (6)

where α, ᾱ, β, β̄ are coefficients for the linear upsampling; α =
(x−xlt)/(xrt−xrt), ᾱ = 1−α, and β = (y−ylt)/(ylt−ylb),
β̄=1−β. x, ylt,rt,lb,rb are the x, y coordinates of 4-NN pixels.

The 4-NN pixels are the nearest pixels from p↓ in the low-
resolution depth mapD↓, only if the target and neighborhood pix-
els are on the same object. When the 4-NN pixels contain outliers
in the region, we use predicted values D̂pr

p instead of the out-
liers for linear upsampling. The event will happen around object
boundaries. To detect outliers in the high-resolution grid, we uti-
lize the upsampled depth map with SSM as guidance. When we
regard pixels as outliers, the difference between the depth value of
the target pixel p and the 4-NN pixels in the low-resolution depth
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Figure 3. Depth map upsampling results (Art dataset). Ratio of upsampling is ×8.

Table 1. Bad pixel ratio in each upsampling [20]. Depth error threshold is 1. The size of datasets is half resolution (704× 560).

x2 x4 x8 x2 x4 x8 x2 x4 x8 x2 x4 x8 x2 x4 x8

JBU 6.23 8.41 9.51 1.49 6.82 10.05 2.54 5.19 9.96 2.54 5.41 12.51 2.51 4.66 8.87

NAFDU 1.62 5.75 8.93 1.35 3.25 5.28 2.28 3.16 9.56 2.28 4.80 7.06 1.17 2.88 6.37

WMU 0.97 2.60 6.56 0.67 1.55 6.45 0.88 2.24 5.37 1.16 1.88 5.71 0.58 1.57 3.77

SSM 1.03 2.62 6.29 0.69 2.76 6.61 0.89 2.32 5.11 1.26 2.07 6.07 0.58 1.47 3.79

PROP 0.74 1.68 4.33 0.65 1.28 3.83 0.71 1.60 4.69 0.70 1.54 4.29 0.45 1.03 2.77

JBU 7.76 13.87 12.40 6.94 11.07 23.14 5.31 9.33 15.99 4.32 8.93 17.66 3.55 6.62 13.50

NAFDU 2.63 8.72 11.81 3.31 7.02 14.82 4.53 6.82 14.17 3.98 8.19 15.71 1.93 4.54 10.18

WMU 2.13 6.89 11.78 2.91 6.91 14.62 4.59 6.68 14.25 3.61 7.85 16.04 1.99 3.75 9.67

BRF+PROP 1.76 4.89 10.87 1.48 5.03 9.17 2.03 4.93 9.89 2.80 6.06 13.93 1.31 3.38 8.16

Reindeer

s=0

noise method

s=3

Aloe Art Moebius Dolls

map is over a depth threshold of the pixel TDp . Thereby, the depth
values of the 4-NN pixels are defined by:

Dl
p =

{
Dl
↓p↓ |DSSM

p −Dl
↓p↓ | < TDp

D̂pr
p otherwise

(7)

l ∈ {lt, rt, lb, rb}.

The depth threshold TDp switches two state of thresholds TDflat

and TDedge for flat and edge areas according to the second derivative
of the low-resolution depth map, which indicates possibilities of
object edges. Therefore, we switch the depth threshold by using
a threshold for the second derivative of the low-resolution depth
map TD

′′
↓ . The depth threshold TDp is defined by:

TDp =

{
TDflat max(| ∂

2

∂2x
D↓p↓ |, |

∂2

∂2y
D↓p↓ |) < TD

′′
↓

TDedge otherwise
, (8)

where ∂2

∂2x
D↓p↓ and ∂2

∂2y
D↓p↓ are the second derivative of depth

map in the x and y directions, respectively. We use the maximum
value of the derivatives.

After detecting outliers in the 4-NN pixels, we predict values
for outliers. The prediction method varies with the number of
outliers. The examples of the predictions are depicted in Fig. 2. If
we have full samples, we do not need a prediction. In the case of 3
samples case, we predict a missing sample by a plane prediction.
If we have 1 or 2 sample(s), we use 16-nearest neighborhoods for
the prediction. All predictions can be made only with the addition
and bit-shift operators.

3.3. Depth Map Denoising

The conventional works convolute noisy depth maps by using joint
images. However, innovation of time of flight (ToF) depth sensors,
such as Kinect v2, reduces noises of depth maps dramatically. A
half decade ago, noise standard deviation of depth maps, which are
ranged in 0 to 255, were from 10 to 20; however, current sensor’s
one is under 3. The fact indicates that direct filtering is better than
joint filtering for denoising because self-signals has higher S/N
and correlations.

Therefore, we use direct filtering of binary weighted range fil-
ter (BRF) [21] as prefiltering for depth maps. BRF is a simplified
bilateral filter or a variant of ε-filter [22]. The spatial kernel of
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Figure 4. Computational time of ×8 noisy upsampling. The image size is
88×70 to 704×560 upsampling. We use Xeon X5690 3.47Ghz (12 core
CPU)

BRF is a box type, and range kernel is binary defined by a thresh-
old. The BRF is quite fast and enough denoising performance for
depth maps.

With BRF, we can separate the denoising issue and the up-
sampling issue. Thus, after denoising, we can set small kernel for
cost volume upsampling. In our setup, we use only 4-NN samples
and 5 depth candidates (σc = 1 with clipping 3σ) for cost volume
upsampling. Using voxels in the cost volume is very sparse; thus,
we compute only valid voxels instead of filtering the whole vol-
ume. The number of filtering samples is the almost same as JBU
with 16-NN samples; thus, computational cost is quite low.

4. EXPERIMENTAL RESULTS

We compare the proposed scheme (PROP: SSM+PLU), SSM only
and three upsampling methods with/without noise conditions. They
are joint bilateral upsampling (JBU) [2], noise-aware filter for
depth upsampling (NAFDU) [3] and weighted mode filter upsam-
pling (WMU) [5]. These competitive algorithms belong to the
upsampling type; consequently, the computational cost is low. We
use five test images in Middlebury stereo datasets [23, 24]. For
our simulation, we generate low-resolution depth maps from the
ground truth by using nearest neighbor sampling. The parameters
in this experiments are as follows; σh = 13, σc = 1, σs = 0.5r,
λ = 2, m = 5, n = 1, TD

′′
= 5 + log r, TDflat = 10 + log r+ 1,

TDedge = 5 + log r + 1, where r is a mugnification factor.
Table 1 shows the error ratio between each upsampling and

the ground truth depth maps with/without noises. The proposed
upsampling has the best performance. Figure 3 shows a visual
comparison in Art. With SSM, we can keep the edge without blur-
ring and scattering pixels, while we cannot smooth the slant sur-



faces. SSM+PLU can smooth the part with keeping the edge. In
the noisy case, the proposed method with BRF prefiltering has the
best performance.

Figure 4 shows the computational time of each upsampling,
and also show the methods in the other type; weighted joint bi-
lateral filtering (WJBF) [7] and cost volume refinement filtering
(CVRF) [9]. Note that the y-axis is a logarithmic scale. The pro-
posed scheme is the fastest in the upsampling type and has real-
time performance. As well, the proposed scheme is quite faster
than the other, because, the conventional works need large kernel
from joint images to handle denoising issues while BRF takes only
0.8 ms with two iterations of 3× 3 kernel filtering.

Replacing an initial depth value from cubic upsampling to the
proposed scheme for refinement filtering or cost volume filtering
further improves the accuracy of depth maps. For example, in
the Art dataset with the ×8 upsampling case, bad pixel ratio was
3.71 with WJBF, and 3.69 with CVRF. Using bicubic for initial
depth map reported in [9], the results of WJBF and CVRF were
14.7 and 12.8, respectively. Thus, our upsampling result is effec-
tive for an initial depth map in these refinement and cost volume
filtering/optimization.

5. CONCLUSION

In this paper, we proposed real-time depth map upsampling, which
accelerates cost volume filtering. The upsampling had two steps;
one was self-similarity matching, and the other was predictive lin-
ear upsampling. Experimental results showed that SSM could up-
sample depth maps without blurring and scattering edges, and then
PLU guided with SSM results was the best performance among
state-of-the-art methods with/without noise conditions. The pro-
posed method run in real-time with a multi-core CPU. It took
about only 10.1 ms in ×8 upsampling.
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