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ABSTRACT

In this paper, we propose a generalized framework of cost volume refinement filtering for visual corresponding
problems. When we estimate a visual correspondence map, e.g., depth map, optical flow, segmentation and so
on, the estimated map often contains a number of noises and blurs. One of the solutions for this problem is post
filtering. Edge-preserving filtering, such as joint bilateral filtering, can remove the noises, but it causes blurs on
object boundaries at the same time. As an approach to remove noises without blurring, there is cost volume
refinement filtering (CVRF) that is an effective solution for the refinement of such labeling of correspondence
problems. There are some papers that propose several methods categorized into CVRF for various applications.
These methods use various reconstructing metrics functions, which are L1 norm, L2 norm or exponential function,
and various edge-preserving filters, which are joint bilateral filtering, guided image filtering and so on. In this
paper, we generalize these factors and add range-spacial domain resizing factor for CVRF. Experimental results
show that our generalized formulation outperform the conventional approaches, and also show what the format
of CVRF is appropriate for various applications of stereo matching and optical flow estimation.
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1. INTRODUCTION

Recently, basic image processing with depth maps, optical flows or segment images, e.g., pose estimation, object
detection, object tracking and free viewpoint video rendering, attracts attentions. If we want high-quality
performance in such applications, the accuracy of the maps is required.

To obtain the accurate corresponding maps, there are two main methods: optimization and filtering refine-
ment. The optimization methods can accurately compute the corresponding maps, but its computational cost
is usually high. In the case of the refinement methods, while the accuracy is a little lower than the optimization
methods, its computational cost is less than the optimization methods. The refinement methods are still not
investigated adequately; hence, we can still hope the improvement of the performance. Moreover, the refinement
methods can also improve the results of the optimization methods.

Estimation of depth maps, optical flows or segment images can be defined by a discrete label-based problem.
A cost volume refinement filter is one of the effective approaches to solve this problem by refining the labels.
Various methods using the cost volume refinement filter are actively proposed in.1–5 However, the cost volume
refinement filter is individually formulated using different methods by the previous works (e.g., metrics for
building a cost volume and filters for refining the cost volume). Furthermore, there is no comparison among
these methods used for the processing of the cost volume filter in the previous works.

Therefore, we generalize the cost volume refinement filter and compare the performance of each format.
Experimental results show that we show the best combination of the cost volume refinement filter for various
applications, e.g., depth map, optical flow estimation and its dynamic range or resolution up-sampling.

The rest of this paper is organized as follows. Section 2 describes related works. A generalized cost refinement
volume filter is defined in Sec. 3. In Sec. 4, experimental results are shown, and appropriate methods for the
cost volume filter are discussed. Section 5 concludes this paper.



Figure 1: Procedure to obtain high-quality outputs by cost volume refinement filtering.

2. RELATED WORKS

The processing part of the cost volume refinement filter (CVRF) is shown in Fig. 1. CVRF is located in a
post processing part of visual corresponding problems. CVRF requires a corresponding map and performs
cost computation, cost aggregation and label computation.5 In this section, we describe what method for the
processing in CVRF is used in previous works. Especially, we introduce three typical methods.

A. Hosni et al.1 showed a method that is applied the cost volume refinement filter to estimation methods for
discrete labeling problems. They constructed a cost volume at the stage of the matching cost computation. In
this time, the cost is computed by L1 norm. The cost volume is refined by using the guided filter.6

Q. Yang et al.2 applied the cost volume refinement filter to the enhancement of resolution of a range image.
This method iteratively refines a cost volume of the range image which is up-sampled from the low-resolution
range image. They compute the cost by L2 norm when they build the cost volume. In filtering the cost volume,
the bilateral filter7 is used.

D. Min et al.4 proposed the weighted mode filtering using joint histograms. The joint histogram is related
to the cost volume filter as reported by them.4 Thus, we regard the weighted mode filtering as one of the cost
volume filter. The methods of constructing and refining the cost volume are the exponential function and the
joint/cross bilateral filter,8,9 respectively.

3. GENERALIZED COST VOLUME REFINEMENT FILTER

As mentioned above, a number of methods using CVRF, and they are effective for wide applications as shown in
the previous works. However, the appropriate format differs according to applied applications. In addition, each
filter of CVRF used in the previous works has not a general format because they are formulated individually.
Therefore, we firstly generalize CVRF in order to apply various formats.

3.1 Cost Volume Refinement Filter

There are three main steps in CVRF. They are building a cost volume, refining cost slices, merging the cost
volume. The overview of CVRF is shown in Fig. 2. In this section, we describe and generalize the each process.

3.1.1 Building cost volume

First, we discuss the process to build a cost volume. The cost volume V consists of N slices of a cost slice Vn
(n ∈ {0, . . . , N − 1}) that is made in each label. We can apply various metrics to this process; hence, we define
Vn(p) that is a pixel value on the pixel p in the cost slice Vn as follows:

Vn(p) = L(n, I(p), τ) 0 ≤ n ≤ N − 1 (1)

where L is a cost function for building the cost slice, n is a label value that each cost slice has, I is an estimated
image, τ is a truncation value. We should select a monotonically increasing function as the cost function L,



Figure 2: Overview of cost volume refinement filtering.

although the function has various types as shown in Tab. 1. In this paper, we compare L1 norm, L2 norm and
the exponential function as the representatives. These functions compute costs as follows:

LL1(n, I(p), τ) =
1

τ
min(||n− I(p)||1, τ) (2)

LL2(n, I(p), τ) =
1

τ2
min(||n− I(p)||2, τ2) (3)

Lexp(n, I(p), τ) = 1− exp

(
−‖n− I(p)‖2

2τ2

)
, (4)

where LL1, LL2 and Lexp are L1 norm, L2 norm and exponential function, respectively. Also, || · ||1 and || · ||2
denote L1 norm and L2 norm, respectively.

3.1.2 Refining cost slices

Next, we explain the process for refining the cost slices. Since the cost slices after building the cost volume
usually contain noises, we refine them by filtering:

V ′n(p) =
∑

s∈S(p)

f(p, s)Vn(s), (5)

where V ′ is a refined cost volume, S(p) is a set of support pixel s around p and f is a filtering weight function.
We can refine them by using any filters if the filters have the effect of noise reduction, but a recommended type
of the filter is edge-preserving filters.6,8–15 The reason is that we can suppress mixture of costs around regions
of object boundaries. We show the examples of the filtering method in Tab. 1.

In addition, the performance of refining the cost slices becomes high by using a weight map. The authors find
that it is effective to use a weight map as representing pixel reliabilities for the depth map refinement reported
in,16 and this is an extension version. Instead of filtering corresponding maps directly, we filter cost slices. This
refinement process as follows:

V ′n(p) =
∑

s∈S(p)

f(p, s)M(s)Vn(s). (6)

There are also various types for the weight map M as shown in Tab. 1. Especially, the trilateral weight map has
good performance.16 Due to this, we use the trilateral weight map in this paper. The trilateral weight map is
computed as follows:

M(p) =
∑

s∈S(p)

w(p, s)c(I(p), I(s))d(R(p), R(s)). (7)

Here, R is a guidance image, w, c and d are exponential functions: exp(−‖x−y‖2
2σ2

s/c/d

), where σs, σc, σd are spatial,

guide color and self value standard deviation, respectively.



Table 1: Examples of method for building cost volume and refining cost slices.
Building cost volume Refining cost slices

Cost function Filter Weight map
• L1norm function • Gaussian filter • Trilateral weight map16

• L2norm function • Joint bilateral filter8,9 • LR consistency map5

• Exponential function • Guided filter6 • Speckle mask
• Sigmoid function • Trilateral filter10 • Uniqueness map
• Cubed differences function • Domain transform filter11 • Up-sampling mask

Figure 3: Overall of our experiments.

3.1.3 Merging cost volume

Finally, we talk about merging the cost volume. After the cost volume is refined, we choose the minimum cost
label at a pixel p:

O(p) = arg min
n

V ′n(p), (8)

where O is the output image. After that, we can additionally conduct sub-pixel interpolation for increasing the
sub-pixel accuracy. In this paper, we apply the quadratic estimator17 as the sub-pixel interpolation method.

In this way, we can generalize each process of CVRF. We can obtain a refined map when we have performed
these processes in all pixels.

3.2 Application

CVRF can be applied to refining various maps, for example, segment image, depth map, optical flow, alpha
map18 and transmission map.19 The difference of the processing for single channel maps such as segment images
and depth maps is the number of the labels. Consequently, the process for the maps are almost the same. On
the other hand, various methods for refining multi-channel maps such as optical flow are possible, although we
filter each channel in this paper.

4. EXPERIMENTAL RESULTS

4.1 Experimental Environment

In this experiment, we refine depth maps as a representative of single channel corresponding maps and optical
flows as a representative of multi-channel corresponding maps. Note that we estimate depth maps by block
matching (BM)20 and semi-global matching (SGM).21 The methods for the estimating optical flows are F-TV-
L122 and Farneback algorithm.23 The objective evaluation method is error rate.20,24 It is calculated by the
percentage of error pixels of an estimated image. We only evaluate non-occluded regions in this paper.

The definition of the error pixel differs between depth maps and optical flows. In the case of depth maps,
difference of pixel values between the input and ground truth depth map has over a threshold value γ (γ = 1
in our experiments). In the case of the optical flows, difference of vector angles and vector lengths between the
input and the ground truth has over threshold values (set to 5.0 and 1.0 in our experiments, respectively). These
errors are called angular error (AE) and endpoint error (EE).24

We use the Middlebury’s data sets20,24 as input images. For depth maps, “Tsukuba”, “Venus”, “Teddy” and
“Cones” are used. For optical flows, “RubberWhale” and “Grove2” are used. Since we utilize multiple images,
we denote their average error rates as our results in each application.
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Figure 4: Difference of filter. (a) Result of averaged error rate among 4 datasets. The method used for building
a cost volume is L2 norm. The number of the cost slices is 256. (b)-(d) are picked up results of Teddy. (b)
Estimated image by BM. (c) Refined image of (b) by CVRF with JBF.

We evaluate the refinement performance of CVRF by conducting six experiments. The overall of our experi-
ments is shown in Fig. 3. Note that we use depth map as the input map in the 1st-5th experiment. Additionally,
we add Gaussian noises depending on the experiments in order to assume that depth maps obtained by a depth
sensor usually include noises.

In the 1st experiments, we investigate the impact of the refinement performance by using various filters. The
2nd experiments show the effectiveness of presence or absence of a weight map. For refining the cost slices, we
use the Gaussian filter (GaF), the guided filter (GuF),6 the joint bilateral filter (JBF)8 in this paper. The 3rd
experiment is about a cost function for building a cost volume. We use L1 norm, L2 norm and the exponential
function as mentioned Sec. 3.1.1. The rest of our experiments focus on the difference of condition of the input
map. Especially, we discuss dynamic range and resolution of depth maps and multi-dimensional corresponding
map of optical flows. In the experiment of dynamic range, the range is down-sampled and up-sampled to half
and double, respectively. In the case of the resolution up-sampling, we up-sample the depth map to original size
using the color based depth up-sampling25 after down-sampling the input depth map to half size using nearest
neighbor algorithm.

4.2 Results and Discussions

4.2.1 Difference of filter

We first show the experimental results of the difference between filters in Fig. 4. In this regard, the parameters of
the filters are experimentally determined in all cases to have the best performance. The amount of improvement
is large when we use the edge-preserving filters from Fig. 4 (a). Also, we can confirm that the edges are corrected
from Figs. 4 (b), (c). Here, the performances of JBF and GuF are almost the same; hence, we use JBF as the
edge-preserving filter following experiments.

4.2.2 Presence or absence of weight map

Figure 5 shows the result about the effect of the trilateral weight map. There are four parameters at the trilateral
weight map generation. The parameters are (σs, σc, σd, r) = (50, 4, 6, 50).

As compared to presence or absence of the weight map, the difference of the refinement performance is large
from Fig. 5 (a). Here, we call JBF and GaF with the trilateral weight map as WJBF and WGaF, respectively.
Especially, the amount of improvement is bigger than the edge-preserving filter without the trilateral weight map
even if we use WGaF that does not have the effect of edge-preserving. In the refined image, the performance of
edge correction becomes high when we compare Fig. 5 (c) with Fig. 5 (b). Thus, we use the trilateral weight
map following experiments.
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Figure 5: Presence or absence of weight map. (a) Result of error rate. The method used for building a cost
volume is L2 norm. The number of the cost slices is 256. (b) Refined image of Fig. 4b by CVRF with WJBF.
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Figure 6: Difference of method for building cost volume. (a) Result of error rate. The filter used for refining the
cost slices is WJBF. The number of the cost slices is 256. (b) Noise added image. The error rate is 42.38 %. (c)
Refined image of (b) by CVRF using L2 norm with WJBF.

4.2.3 Difference of method for building cost volume

We show the result of the difference of the methods for building the cost volume in Fig. 6. We can confirm
that the difference of the amount of improvement is little from Fig. 6 (a) when the input depth map is high
quality. However, there is a clear difference when the input includes noises. In using L1 norm for building the
cost volume, the amount of improvement becomes low relative to the other methods∗. From this result, L1 norm
is not appropriate for this process.

4.2.4 Dynamic range up or down-sampling

As shown in Fig. 7, there is little difference when γ = 1. On the other hand, if we measure the amount of
improvement in the sub-pixel level, it becomes low when we down-sample the dynamic range. Consequently,
we should not down-sample the dynamic range if we want the accurate result. Moreover, the effect is almost
nothing in the case of the up-sampling the dynamic range, so we had better not up-sampling it.

4.2.5 Resolution up-sampling and noisy up-sampling

The result of refinement for an up-sampled depth map shows in Fig. 8. In the case of up-sampling not including
noises, WJBF is better. However, the amount of improvement of WGaF is lower than WJBF when we up-sample
the noisy depth map. We consider the reason that noises have been extended by up-sampling, and hence WJBF
can not reduce the noises relative to WGaF because of edge-preserving effect. Actually, we can confirm that the
performance of edge correction of WJBF is better than WGaF from Figs. 8 (b), (c), (d). Therefore, we should
reduce the noises before up-sampling when we up-sample a depth map including noises.

∗This tendency is almost the same as the estimated depth map by BM.
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Figure 8: Resolution up-sampling and noisy up-sampling. The input depth map is estimated by SGM. The noise
is added before up-sampling. (a) Result of error rate. The method used for building a cost volume is L2 norm.
The number of the cost slices is 256. (b) Noise + Up-sampled image. The error rate is 41.98 %. (c) - (d) Refined
images of (b) by CVRF with WGaF and WJBF, respectively.

4.2.6 Depth map registration for unstructured pixels from depth sensor

In this section, we demonstrate the effect of the weight map for unstructured depth map registration. When
we capture a depth map and its associated RGB image captured with a depth sensor, positions and resolution
is different between RGB and depth camera. Registering the depth map to the RGB image coordinates, we
project pixels in the depth map to the RGB image. After that, the depth map is sparsely mapped to the RGB
image coordinates. Three factors make the registered-depth-map sparse; difference of camera position, difference
of image resolution and lens distortion, unreliable pixels. The position of the missing pixels is unstructured
manner; thus a suitable interpolation is required for making dense depth map.

CVRF whose weight map indicates missing pixels can interpolate depth map well. Figure 9 shows an example
of the depth map registration by using a depth sensor of Kinect V2. The resolution of image is 1920× 1080 and
of depth is 512× 424. The result shows that the registered depth map is well construed without the outside of
the map. The missing pixels in outside are caused by the difference between the field of view of the cameras and
the distortion of the cameras.

4.2.7 Optical flow refinement

Here, we discuss the effect of the optical flow refinement. Figure 10 shows the results of optical flow refinements.
As a whole, we can confirm that the optical flow refinement by CVRF is effective. The notable point is that
blurs on the object boundaries are removed as shown in Figs. 10 (c), (d), (e). However, in common with the
noisy up-sampling part, the performance of WGaF becomes higher than WJBF when the quality of the input
flow is low. The reason is almost same as the noisy up-sampling part.

5. CONCLUSION

In this paper, we generalized a cost volume refinement filter (CVRF) and evaluated the performance of CVRF
applied by various methods. Experimental results showed that CVRF is effective for various applications. More-
over, we demonstrated the appropriate methods for the cost volume filter by comparing each method.
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Figure 9: Unstructured depth map up-sampling.

Although we only used the trilateral weight map as a weight map in this paper, there are the other weight
maps. Therefore, we consider that our future work investigates the difference of performance between weight
maps.
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