
Randomized Redundant DCT:
Efficient Denoising by Using Random Subsampling of DCT Patches

Shu Fujita1 Norishige Fukushima∗1 Makoto Kimura2 Yutaka Ishibashi1
1Nagoya Institute of Technology, Japan

2Samsung R&D Institute Japan

Figure 1: Overview of proposed and conventional denoising methods. The conventional method utilizes completely redundant patches;
while our method performs random subsampling for the patches. The random subsampling can accelerate the denoising method, while the
denoising performance is preserved.

Abstract

In this paper, we propose an acceleration method for image denois-
ing with a redundant discrete cosine transform (R-DCT). Image de-
noising is essential for image processing, and its efficiency is impor-
tant for graphics applications. R-DCT with a hard-thresholding or
shrinkage method can perform denoising while keeping detail tex-
tures. Moreover, the method is computationally efficient compared
with state-of-the-art denoising methods, such as BM3D. The com-
putational cost, however, is still insufficient for real-time process-
ing; hence, we accelerate the method by using randomized subsam-
pling of DCT patches. Experimental results show that our method
can accelerate the processing while the degradation of denoising
performance is a little.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement—Smoothing

Keywords: image denoising, redundant DCT, real-time denoising,
randomized sampling

1 Introduction

Image denoising is a fundamental issue in image processing, and
it is often required as pre-processing or post-processing in graphics
applications. For real-time applications, the efficiency of image de-
noising is essential. Especially in computer graphics applications,

∗http://fukushima.web.nitech.ac.jp/en/

we should focus the trade-off between denoising performance and
its efficiency.

Among image denoising methods, patch-based methods achieve
high performance. Non-local means filtering [Buades et al. 2005]
is a representative of spatial domain denoising and has several ac-
celeration methods [Adams et al. 2009; Adams et al. 2010; Gastal
and Oliveira 2012; Fukushima et al. 2015]. Detailed textures, how-
ever, tend to be over-smoothed using spatial domain approaches.
As the other patch-based method, BM3D [Dabov et al. 2007] is one
of the state-of-the-art methods [Knaus and Zwicker 2014]. BM3D
has two steps: spatial domain processing and frequency domain
processing. BM3D has excellent denoising performance while the
method is computationally expensive.

Denoising based redundant discrete cosine transform (R-DCT) [Yu
and Sapiro 2011], which is a patch-based and frequency domain
approach, has a fair trade-off between denoising performance and
computational efficiency. Thus, R-DCT is implemented in FFM-
PEG of famous video encoder/decoder. R-DCT denoising performs
a thresholding or shrinkage process for each patch in the frequency
domain as the other frequency domain approaches [Chang et al.
2000; Starck et al. 2002]. Then, the processing is performed re-
dundantly by using overlapping patches. The method has better
denoising performance than the non-local means filtering, and the
computational cost less than the non-local means filtering. The
computational cost, however, is slightly insufficient for real-time
applications.

Therefore, we propose an acceleration method for denoising based
R-DCT in this paper. The redundancy is important for denois-
ing performance in the R-DCT denoising; however, the improve-
ment of the denoising performance from the redundancy is satu-
rated. Based on the over-redundancy, we subsample the redun-
dant patches. Moreover, we introduce a randomized subsampling
method—named as randomized redundant DCT (RR-DCT)—for
aliasing issues, which is inevitable in subsampling. The acceler-
ated code for RR-DCT is downloadable 1.

1http://fukushima.web.nitech.ac.jp/research/rrdct/

http://fukushima.web.nitech.ac.jp/en/
http://fukushima.web.nitech.ac.jp/research/rrdct/

Figure 2: Degree of overlapping of R-DCT and RR-DCT patches
around a target pixel. The patch size is 4× 4.

2 Redundant DCT

We review the R-DCT denoising proposed by Yu and Sapiro [Yu
and Sapiro 2011] in this section. Let Ω be a set of all patches of size
N × N in an input image I . R-DCT denoising firstly transforms
the i-th patch fi ∈ Ω into signals in the frequency domain:

Fi = ψDCT(fi), (1)

where ψDCT(·) represents a forward DCT function, and Fi has DCT
coefficients of the patch fi. We regard DCT coefficients as noises
if the DCT coefficients are less than a threshold value τ . Then, we
discard them by hard-thresholding:

F ′i (u, v) =

{
Fi(u, v) |Fi(u, v)| > τ

0 otherwise,
(2)

where F ′i is the coefficients after hard-thresholding. Note that the
direct-current (DC) component must be protected, i.e., the F ′i al-
ways satisfies that F ′i (0, 0) = Fi(0, 0); thus, we perform the hard-
thresholding without the DC component. The refined coefficients
F ′i are re-transformed into spatial domain signals:

f ′i = ψiDCT(F ′i), (3)

where f ′i is a denoised patch, and ψiDCT(·) represents an inverse
DCT function. R-DCT denoising performs these processes for each
patch in the set Ω.

Each patch includes overlapping areas as shown in the left-side of
Fig. 2. R-DCT denoising averages the all overlapped patches, that
is, the value of the output image at pixel p is as follows:

I ′(p) =
1

|ω(p)|
∑

f ′
i∈ω(p)

f ′i(mapi(p)), (4)

where ω(p) ⊂ Ω represents a set of patches including a pixel p, and
|ω(p)| represents the number of elements of ω(p). mapi(·) repre-
sents a mapping function of corresponding positions between the
focusing pixel p and the corresponding position in the i-th patch.

For color image processing, the method performs a color decorre-
lation for RGB channels as pre-processing and then perform de-
noising for each channel. In this color decorrelation, we compute
3 point DCT for color vectors and use the following orthonormal
basis: {(1√

3
, 1√

3
, 1√

3
)T , (1√

2
, 0,− 1√

2
)T , (1√

6
,− 2√

6
, 1√

6
)T }. The

color decorrelation can improve the denoising performance than
a standard color transformation, such as the YUV and Lab color
space.

Figure 3: Example of Poisson-disk subsampling for patches. This
sampling method can uniformly sample patches.

(a) RS (b) PDS

Figure 4: Frequency domain of differential signal between subsam-
pled and full sampling signal. The input image is “barbara”.

3 Randomized Redundant-DCT

We introduce our method of RR-DCT. Here, we have one patch
per one pixel in the case of the full-patch set; however, the patches
have much redundancy. Thus, we subsample the patches. We use
a subset Ωs of the full-patch set Ω. An example of subsampled
patches is shown in the right-side of Fig. 2. Letting ωs(p) ⊂ Ωs

be a subset of the subsampled patches including a pixel p, Eq. (4)
is re-written as:

I ′(p) =
1

|ωs(p)|
∑

f ′
i∈ωs(p)

f ′i(mapi(p)). (5)

The subsampling method is important for denoising performance.
The intuitive subsampling is dropping off the patches at a regu-
lar interval—named regular subsampling (RS). In the extreme RS
case, patches have no overlap like DCT processing of JPEG image
coding. Unfortunately, RS causes aliasing in reconstructed images;
hence, we introduce a randomized subsampling method for prevent-
ing the degradation.

If we perform purely random sampling, the density of sampling has
not equality. In the worst case, these are no patches for a denois-
ing pixel. Here, Poisson-disk sampling (PDS) [Cook 1986; Dunbar
and Humphreys 2006] has a suitable property for the random sub-
sampling [Banterle et al. 2012]. The subsampling method selects
points that the distance of the points among the samples should
be d at least. For extending the patch subsampling, we drop-off
the patches, which have the defined distance from the center of the
nearest patches. The defined distance d should be shorter than the
patch width/height. The example of sampling is shown in Fig. 3.

We show the frequency domain signals of the differential signals
between subsampled and full sampled signals in Fig. 4. The sub-
sampling methods are RS and PDS. Note that the sampling densities
are almost the same. We can see the biases in frequency character-
istics of RS while PDS has almost flat characteristics.

Figure 5: Diagram of implementation in parallelization.

4 Implementation

We present the implementation of RR-DCT. For efficient imple-
mentation, we discuss two points: Look-up-table (LUT) for ran-
domized sampling patterns and parallelization of our denoising.

At first, we prepare several patterns of PDS to LUTs before de-
noising for saving the computational cost of generating patterns.
We have to prepare a limited number of LUTs for randomness and
switch the LUTs image by image.

The next point is parallelization. The proposed denoising method
contains three steps; patch-sampling (Sec. 3), patch-denoising (Eq.
(1)-(3)) and patch-averaging (Eq. (4) or (5)). The patch-sampling
and patch-denoising can be massively parallelized; however, patch-
averaging is a typical reduction pattern in parallel processing [Mc-
Cool et al. 2012]. Patches are the minimum processing unit for this
denoising; thus all process must be in the reduction pattern, which
is not effective than the fully parallelized case.

For avoiding the reduction pattern, we divide an input image into
multiple sub-images, which have the copy image of the overlapped
regions (See Fig. 5). For each sub-image, we perform patch-
sampling, patch-denoising and counting the number of patches.
Note that we parallelly process these processes par sub-image. Fi-
nally, we parallelly average the overlapped region of sub-images by
using reduction pattern. The averaging process is the lowest cost
step; thus we can save the degradation of performance from the
reduction process.

This parallelization is suitable for CPUs, which do not have hun-
dreds of cores. Note that the process is not scale to massively
multi-core devices, such as GPU. The parallelization is efficient for
a small number of cores. To moderate the overhead, additonal ver-
tical separations for sub-images is useful for many-core cases.

5 Experimental Results

We verify the accuracy and efficiency in this section. For accuracy
evaluations, we use PSNR. We use 8 × 8 DCT patch and set the
thresholding value τ to the same value of noise level σ. We imple-
ment LLM-based-DCT with SIMD vectorization for fast comput-
ing [Loeffler et al. 1989]. For the other patch size case, we utilize
Plonka’s DCT factorization[Plonka and Tasche 2005].

Accuracy performance

We firstly show the results of the denoising accuracy of our
method. The comparison results between the brute-force imple-
mentation [Yu and Sapiro 2011] and ours are shown in Fig. 6 and 7.
Note that we show the cases of d = 2, 3 where is the minimum

25

28

31

34

37

40

P
S

N
R

 [
d

B
]

R-DCT RR-DCT (d=2) RR-DCT (d=3)

s = 10 s = 20 s = 30

Figure 6: Comparison of PSNR accuracy. We use Kodak PhotoCD
dataset (24 images), and this result is the average value. Note that
the average PSNR of each input image are 28.23 dB, 22.33 dB, and
18.98 dB, respectively. The standard deviation of RR-DCT is about
6.1× 10−3, which the number of trials is 1000.

(a) Ground truth (b) Noisy input, 22.34 dB

(c) R-DCT, 34.37 dB (d) RR-DCT(d=2), 34.11 dB

Figure 7: Image denoising results by R-DCT. (a) Exact image. (b)
Noisy image added with Gaussian noises where the standard de-
viation σ = 20. (c) Full sampled result (R-DCT). (d) Our result
(d = 2).

distance for PDS. The subsampling rates of the patches are about
20% and 8%, respectively.

Figure 6 shows the denoising performance for various images. We
use 24 images in Kodak PhotoCD dataset. The results represent
that the degradation of denoising performances is low even if we
drop-off many patches. Furthermore, the variation of PSNR is quite
small. The fact is also visually shown in Fig. 7.

Computational performance

We demonstrate the computational performance in this experiment.
The resolution of the test image is 1024 × 1024 (one megapixel).
We have vectorized the C++ code for the proposed and competitive
methods by using SIMD intrinsics with Visual Studio 2010. The
CPU is Intel Core i7-3770K 3.50 GHz on Windows 7 64 bit.

Figure 8 shows the result of the computational performance. Our
method becomes faster as the subsampling rate increases. More-
over, we can accelerate ×2 or ×3 by parallelizing in our experi-
mental environment with 4 core CPU.

0

100

200

300

400

500

600

700

R-DCT RR-DCT (d=2) RR-DCT (d=3)

P
ro

ce
ss

in
g

 t
im

e
[m

s]

Single Parallel

Figure 8: Processing time with a one megapixel color image.

(a) Ground truth (b) Noisy input (c) BM3D, 4100 ms

(d) AM, 140 ms (e) R-DCT, 72 ms (f) RR-DCT, 23 ms

Figure 9: Denoising results by various methods. (a) Ground truth.
(b) Noisy input image added Gaussian noises where the standard
deviation σ = 20. (c) BM3D result. (d) AM (6-D) result. (e) R-
DCT result. (d) Our result (d = 2). The image size is 768× 512.

Comparison with state-of-the-art methods

We compare our RR-DCT denoising with the state-of-the-art de-
noising methods. We use BM3D [Dabov et al. 2007] and adap-
tive manifolds (AM) [Gastal and Oliveira 2012] as our competitive
methods. Here, BM3D is the best denoising performance method,
and we implement BM3D by C++ with FFTW. AM is one of the
real-time denoising methods, which is the fastest acceleration of
non-local means filtering (but AM is not limited to denoising appli-
cations). We use OpenCV’s implementation for AM.

Figure 9 shows the comparison of them. Although AM over-
smooths the image, our result can preserve detail textures. BM3D
has the best denoising performance; however it takes ×200 pro-
cessing time compared to ours.

6 Conclusions

We have proposed an acceleration method for image denoising with
redundant DCT. The acceleration is achieved by randomized sub-
sampling of patches—named as randomized redundant DCT (RR-
DCT). The randomized subsampling supports denoising perfor-
mance and computational efficiency at the same time. As a result,
ours has the best real-time denoising performance among the com-
petitive methods.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number
15K16023.

References

ADAMS, A., GELFAND, N., DOLSON, J., AND LEVOY, M. 2009.
Gaussian kd-trees for fast high-dimensional filtering. ACM
Trans. on Graphics 28, 3.

ADAMS, A., BAEK, J., AND DAVIS, M. A. 2010. Fast high-
dimensional filtering using the permutohedral lattice. Computer
Graphics Forum 29, 2, 753–762.

BANTERLE, F., CORSINI, M., CIGNONI, P., AND SCOPIGNO, R.
2012. A low-memory, straightforward and fast bilateral filter
through subsampling in spatial domain. Computer Graphics Fo-
rum 31, 1, 19–32.

BUADES, A., COLL, B., AND MOREL, J. M. 2005. A non-local
algorithm for image denoising. In Proc. CVPR, 60–65.

CHANG, S., YU, B., AND VETTERLI, M. 2000. Adaptive wavelet
thresholding for image denoising and compression. IEEE Trans.
on Image Processing 9, 9, 1532–1546.

COOK, R. L. 1986. Stochastic sampling in computer graphics.
ACM Trans. on Graphics 5, 1, 51–72.

DABOV, K., FOI, A., KATKOVNIK, V., AND EGIAZARIAN, K.
2007. Image denoising by sparse 3-d transform-domain collab-
orative filtering. IEEE Trans. on Image Processing 16, 8, 2080–
2095.

DUNBAR, D., AND HUMPHREYS, G. 2006. A spatial data struc-
ture for fast poisson-disk sample generation. ACM Trans. on
Graphics 25, 3, 503–508.

FUKUSHIMA, N., FUJITA, S., AND ISHIBASHI, Y. 2015. Switch-
ing dual kernels for separable edge-preserving filtering. In Proc.
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP).

GASTAL, E. S. L., AND OLIVEIRA, M. M. 2012. Adaptive man-
ifolds for real-time high-dimensional filtering. ACM Trans. on
Graphics 31, 4.

KNAUS, C., AND ZWICKER, M. 2014. Progressive image denois-
ing. IEEE Trans. on Image Processing 23, 7, 3114–3125.

LOEFFLER, C., LIGTENBERG, A., AND MOSCHYTZ, G. S. 1989.
Practical fast 1-d dct algorithms with 11 multiplications. In Proc.
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 988–991.

MCCOOL, M., REINDERS, J., AND ROBISON, A. 2012. Struc-
tured parallel programming: patterns for efficient computation.
Elsevier.

PLONKA, G., AND TASCHE, M. 2005. Fast and numerically stable
algorithms for discrete cosine transforms. Linear algebra and its
applications 394, 309–345.

STARCK, J.-L., CANDES, E., AND DONOHO, D. 2002. The
curvelet transform for image denoising. IEEE Trans. on Image
Processing 11, 6, 670–684.

YU, G., AND SAPIRO, G. 2011. Dct image denoising: A simple
and effective image denoising algorithm. Image Processing On-
Line 1.

