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For hyperspectral imaging, we proposed an edge-
preserving filter, named hyperspectral Gaussian filter-
ing, and its separable implementation for accelerating the
proposed filter. Experimental results show that the ac-
celeration has superior performance to the brute-force
implementation and the other state-of-the-art methods in
denosing. Also, we successfully achieves 70-times speed-
up with the acceleration.

1 Introduction
Multi/Hyper-spectral imaging has various applications [1]

and extends functionality and sensibility in robot vision and
remote sensing fields. Denoising of hyperspectral images is
an essential issue for these applications.

Bilateral filtering [2] is one of the most successful tools
in 2D image processing for denoising and edge-preserved
smoothing as pre-filtering of segmentation. For multispec-
tral imagery, a variant of bilateral filtering—dual bilateral
filtering— is proposed [3]. The dual bilateral filter uses two
range kernels for filtering RGB and IR images. Vector bi-
lateral filtering [4] is proposed for hyperspectral image de-
noising. The vector bilateral filter extends the bilateral fil-
ter to control range kernel distribution by band-per-band. To
improve filtering of hyperspectral images, we can utilize re-
dundancy of the wavelength dimension for improving the
denoising performance. Bilateral filtering is, however, cost
consuming, and its higher-dimensional version is more cost-
consuming than bilateral filtering.

Accelerated bilateral filtering [5] is O(1)-order. The costs
of the accelerated filter, however, is exponentially increased
by increasing channels. Hyperspectral images have many
channels; thus, we need more tolerant acceleration methods
to the curse of dimensionality.

In this paper, we propose an effective filtering for hy-
perspectral images, named hyperspectral Gaussian filtering
(HGF) and its acceleration technique of separable implemen-
tation.

2 Hyperspectral Gaussian Filtering
2.1 Definition

For hyperspectral Gaussian filtering, we create 3D kernels
for a hyperspectral cube. Let Isp be a pixel value at position
p=(xp,yp) with wavelength s, and a filtered pixel value is:
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where Ks
p is a normalization factor, Λ is a support subset

of wavelength-dimension and λ is the element, and Ω is a
support subset of special-dimension and q = (xq,yq) is the
element. Iλq is a support pixel in the hyperspectral cube.
The weight ws,λp,q is defined by multipliers of three weight,

which are weights of domain distance similarity (wd), inten-
sity similarity (wi) and spectral similarity (ws):
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The domain distance similarity weight is defined as:
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where α is balancing parameter between the spacial distance
of image and the wavelength distance. The intensity similar-
ity weight is defined as:
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The spectral similarity weight is defined by the Gaussian
weighted total product of distance of each wavelength:
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where N is the maximum number of the spectral image.
Brute-force implementation of HGF has O(lr2)-order,

where l is the number of elements in Λ and r is the kernel
radius of Ω. The computational is huge; thus, the efficient
implementation is required.

2.2 Separable Acceleration
Accelerating HGF, we approximate the filter by forcefully

separating the 3D kernel in the hyperspectral cube to 1D ker-
nels. We call this filter separable hyperspectral Gaussian fil-
tering (SHGF). Algorithm 1 presents the overview of SHGF.
The computational order of SHGF is reduced to O(l + r).

With this algorithm, firstly, we filter the cube along the
1D horizontal dimension, and then perform the filtered cube
along the 1D vertical dimension. Finally, we filter the dou-
ble filtered cube along the 1D spectral dimension. Especially
in the second and third filtering, weights should be computed
from non-filtered spectral images [6], i.e., joint/cross filtering
style; thus, these weights are independent of the sequence of
separable filtering. Moreover, the weight computation tech-
nique can prevent the over-smoothing problem. Also, we
control Gaussian distribution parameter of σ to prevent the
streaking noise problem in separable filtering. We narrow the
distribution of Gaussian for intensity and spectral weights in
the second and the third pass; thus, we use these parameters:
βσi, βσs, γσi (0 ≤ β, γ ≤ 1). Note that spectral parameters
are shrunk in the spectral dimensional filtering, because each
sample has the same spectrum in this dimension.



Algorithm 1 Separable Hyperspectral Gaussian Filtering

Input: I, σd, σi, σs, σsg, α, β, γ
Output: Īs

1: Horizontal 1D filtering for I with (σd, σi, σs, σsg, α).
Output is Īh.

2: Vertical 1D joint filtering for Īh (kernel is computed
form I) with (σd, βσi, βσs, σsg, α). Output is Īv .

3: Spectral 1D joint filtering for Īv ((kernel is computed
form I) with (σd, γσi, α).

(a) Noisy image (b) Grand truth

(c) Bilateral filter [2] (d) Vector bilateral [4]

(e) HGF (f) SHGF
Fig. 1: Denoising results.

3 Experimental Results
In our experiment, we use the hyperspectral natural image

dataset [7]. Note that we use a hyperspectral image whose
spectral dimension is 21. The wavelength of the images is
from 450 nm to 650 nm at 10 nm intervals. We employ bilat-
eral filtering [2] and vector bilateral filtering [4] as our com-
pared methods. Note that we apply bilateral filtering to each
spectral image captured about a wavelength, and vector bilat-
eral filtering is performed without a noise level estimation for
each spectral image, i.e., the most simplified implementation.
For our HGF and SHGF, we set the 3D kernel to 7× 7× 7.

Denoising results are shown in Fig. 1. We add Gaussian
noises, where the standard deviation σ is 20, to the noisy
image. The noises remain in the bilateral filter and the vec-
tor bilateral filter results. By contrast, ours of the HGF and
SHGF can remove the noises while preserving the texture.

The denoising performance is also presented in PSNR ac-
curacy results (Tab. 1). Our methods have the best results
as compared to the other state-of-the-art methods. More-
over, our separable implementation superior to the brute-
force. The fact indicates that spectral domain information
has an important role in hyperspectral denosing. We will in-
vestigate the relation as our future work.

Table 1: PSNR accuracy results [dB].
Method σ = 10 σ = 20 σ = 30

Input 28.32 22.89 19.85
Bilateral filter [2] 37.21 33.45 31.46

Vector bilateral [4] 38.98 34.90 31.75
HGF 39.17 36.25 33.16

SHGF 40.19 36.43 33.42

Table 2: Computational time results [sec].
Method time [sec]

Bilateral filter 2.01
HGF 468

SHGF 6.84

Computational time results are shown in Tab. 2. Note that
the input image resolution is 1338 × 1021, and the CPU is
Intel Core i7-3770K 3.50 GHz. The computational cost of
HGF is too expensive, while our separable implementation
can accelerate ×70 from the brute-force implementation.

4 Conclusion
We proposed hyperspectral Gaussian filtering (HGF) and

also presented the separable acceleration for HGF. Our pro-
posed methods have the best denoising performance among
the compared methods. Moreover, our separable implemen-
tation allows us to compute efficiently (×70 speed-up) while
keeping enough denoising performance. As our future work,
we will investigate more sophisticated method through a
noise level estimation.
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