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In this paper, we propose a semi-automatic depth estimation algorithm for Free-viewpoint TV (FTV). The

proposed method is an extension of an automatic depth estimation method whereby additional manually created data is

input for one or multiple frames. Automatic depth estimation methods generally have difficulty obtaining good depth results

around object edges and in areas with low texture. The goal of our method is to improve the depth in these areas and reduce

view synthesis artifacts in Depth Image Based Rendering. High-quality view synthesis is very important in applications such

as FTV and 3DTV. We define three types of manual input data providing disparity initialization, object segmentation infor-

mation, and motion information. This data is input as images, which we refer to as manual disparity map, manual edge map,

and manual static map, respectively. For evaluation, we used MPEG multi-view videos to demonstrate that our algorithm

can significantly improve the depth maps and, as a result, reduce view synthesis artifacts.
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1. Introduction

Free-viewpoint view synthesis has gained increasing
research interest over the last decade. Multi view video
signals are typically captured by an array of synchro-
nized and calibrated cameras, which capture a 3D scene
from multiple viewpoints. Virtual viewpoint images
can be generated using the multiple views and asso-
ciated depth data through Depth Image Based Render-
ing (DIBR)". This enables applications such as Free-
viewpoint TV (FTV)»"® or 3DTV?, where the user
can freely change their viewpoint, and perceive depth.
Due to increased popularity of 3D cinema the interest in
3D video applications is growing rapidly. Most current
3D cinema systems are based on stereo images requiring
glasses to make the viewer see a different view with each
eye®. The recent development of auto-stereoscopic dis-
plays enables multiple viewers to experience a 3D depth
impression without glasses. These type of 3DTV and
FTV applications require dense depth maps for photo-
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realistic image rendering. The goal of our method is to
generate depth data accurate enough to enable view-
synthesis with no visual artifacts for FTV-type appli-
cations. In these applications, the depth is generally
generated offline, and the required manual work for gen-
erating the manual input data can be part of the pro-

duction work.
2. Related works

Disparity estimation or stereo matching has been an
active research area for many years, and many algo-
rithms are evaluated in”. Generally these algorithms
can be divided into local (window-based) and global
methods”. Most of the best performing offline depth es-
timation algorithms are global methods based on an en-
ergy minimization framework™. In this framework, the
disparity matching is approached as a labeling problem
formulated in terms of energy minimization. The en-
ergy function contains a data-term and smoothing term

as in:

E(fp) = Edata(fp) + Esmooth(fp7 fq) (1)

The data-term FEgu:, is a matching cost, indicating
how well the label f, fits pixel p, and is normally de-
rived from the intensity or color differences between
the points to be matched. Generally, the disparity

of neighboring pixels are piecewise smooth within ob-
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jects. Fgmootn is the smoothing term representing the
smoothness between pixel p and its neighboring pixel
q. The labels corresponding to the disparity of pixel
p and ¢ are indicated by f, and f,, respectively. The
most commonly used non real-time energy minimization
algorithms are Belief Propagation'?!V!*®  and Graph
Cuts®®. In our depth estimation method we use the
Graph Cuts implementation of Kolmogorov® because
it is one of the fastest implementations while obtaining
good optimization performance.

One of the main problems in stereo matching is caused
by occlusion areas, containing pixels which are visible
in one view only. Occlusion occurs at the boundaries
of foreground objects, were background pixels are oc-
cluded by the foreground object. If more than two cam-
era views are available, occlusions can be handled by us-
ing more input views. For example, if we consider three
cameras left, center, and right, then pixels occluded in
the left camera are normally visible in the right cam-
era. In our method we use three camera views to reduce
the problem of occlusions, and we perform matching be-
tween the center and left, and center and right camera.

Another problem is caused by image areas which con-
tain little texture. In these areas, all neighboring pixels
contain similar color, which causes the matching cost
to be nearly constant for all disparity values. As a re-
sult, the global minimum energy in those areas does not
necessarily yield the correct disparity.

Both occlusion and areas of low texture cause prob-
lems for many automatic depth estimation meth-
ods to accurately find object boundaries. Recently,
segmentation-based stereo approaches (for example
1I19) have gained popularity, as they can reduce the
difficulties caused by textureless areas and occlusion,
by segmenting the input images into regions of similar
colors. Segmentation based methods assume that pix-
els with similar color have similar disparity, and that
there are no large depth discontinuities within each seg-
ment. Although these methods can improve the depth
in smooth areas, and define clear object boundaries,
they tend to cause problems in textured areas. Fur-
thermore, segmentation errors can cause wrong depth
boundaries that result in very visible rendering arti-
facts.

The rest of this paper is organized as follows: We start
by a short overview of our method in section 3.1. Then
we outline the manual input data in section 3. 2 followed
by the technical details of the energy minimization in

section 3. 3. We show the performance of our algorithm
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in the experiments in section 4, and section 5 concludes

our paper.
3. Proposed Algorithm

3.1 Overview of our method

The semi-automatic depth estimation method pre-
sented in this paper is an extension of an automatic
depth estimation method based on the energy mini-
mization framework. Although we use Graph Cuts for
our energy optimization, the presented method also ap-
plies for algorithms based on e.g. Belief Propagation.
Our goal is to improve the depth accuracy of the au-
tomatic depth estimation, and as a result, reduce view
synthesis artifacts. Furthermore, our method includes a
temporal propagation algorithm, which helps to reduce
the amount of manual work, and improves the temporal

consistency of the output depth video.
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Fig.1 Simplified flow diagram.

To improve the automatic depth estimation algo-
rithm, additional manually created data is input for one
or multiple frames. The three main purposes of this
manual input data are: (a) to provide disparity values
for areas where automatic depth estimation fails to find
an accurate value (e.g. due to little texture, noise, and
reflections etc.), (b) to provide object segmentation in-
formation, (c) to provide information on static areas. A
simplified flow-diagram of our proposed method is de-
picted in Fig.1. Our method can be divided into two
main steps, which we denote as Init Stage(the left flow
in Fig.1), and Temporal Stage(the right flow in Fig.1).
In both cases we read three camera views to obtain a

depth map for the center view. The matching cost is
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Fig.2 Left to right: camera center view, manual disparity map, manual edge map, and manual static

map.

obtained by matching between the center, and the left-
and right-view. In the Init Stage, manual disparity ini-
tialization and edge information is provided, which is
used to update the energy function. The disparity data
helps to make the energy data-term more distinctive
so the global minimum energy converges to the correct
disparity. The edge information is used in the energy
smoothing term to cut disparity smoothing at dispar-
ity edges. If a scene contains static objects, the depth
of these objects remain static over time (assuming the
camera is not moving). Therefore, we want to prop-
agate accurate depth obtained in the Init Stage into
following frames. This results in two benefits, namely:
it reduces the amount of manual input data, and it im-
proves the temporal consistency as the depth in static
areas is kept constant over time. In the Temporal Stage,
static areas between the current and previous frame are
detected automatically or defined via the manual input
data. The energy data-term is updated to propagate
depth of static areas from the previous frame to the
current frame. Whether pixels moved from one frame
to the next is automatically detected based on intensity
difference. This automatic motion detection is often dif-
ficult if the intensity changes because of e.g. shadow,
reflection, or noise. Therefore, our temporal consistency
algorithm allows pixels to be manually assigned as static
through the manual input data. Finally, a per-pixel dis-
parity map is obtained by solving the energy function

using Graph Cuts.
3.2 DManual input data

As mentioned in the previous section, in our method
manually created data is input which provides dispar-
ity initialization, object segmentation information, and
motion information. This manual input data is input as
bitmap images that can be created in any standard im-
age editing software which supports multiple layers. We
define three types of manual input data, which can be
supplied for any arbitrary frame (please refer to Fig.2

for an example snapshot):
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e Manual disparity map: This is a grayscale image
containing disparity initialization, for example for ar-
eas with low texture, noise, or reflections. A pixel with
intensity 10 in the manual disparity map, means that
the disparity value for that pixel is initialized in the
Graph Cuts energy function to disparity value 10. The
Graph Cuts smoothing will propagate the disparity ini-
tialization spatially to surrounding low textured areas.
This reduces the amount of initialization required in
the manual disparity map. For areas where no initial-
ization is required, the intensity in the manual disparity
map is set to zero(black), as in the example in Fig.2.
The disparity value used for initialization is obtained
manually from shift in matching points. We created a
simple utility which overlays the input images, and al-
lows the user to shift the images manually. This enables
the user to easily obtain disparity for object edges and
other feature points. For low texture areas such as the
white background behind the clock in Fig.2, it is very
difficult, but unnecessary, to obtain the ”ground truth”
disparity value. In this case it is sufficient to set the
disparity of the background such that it is behind the
(farthest) object (e.g. the clock in Fig.2).

e Manual edge map: This binary bitmap is manually

drawn and defines object edges that have a disparity

jump. The edge information is used in the Graph Cuts

optimization to cut disparity smoothing. If the manual
edge map indicates an edge, the disparity in the depth
map is expected to jump. If this edge-map indicates no
edge, then the disparity is expected to change smoothly.
In all of our test sequences it worked best to overlay the
input color image and edge map in different layers in the
image editor, and manually trace the edge in the layer
of the edge map. It may be helpful to first histogram
equalize the color image to enhance object edges. In
our experience, using an edge detector output such as
Canny, seemed not useful because deleting false object
edges and correcting missed edges took more time than
manual tracing an edge. Currently, our method sup-
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ports only edge maps at integer pixel accuracy, which
seemed sufficient in all our experiments.

e Manual static map: If the automatic detection of

static pixels is inaccurate e.g. due to shadow, reflection,
or noise, this map can overrule the automatic detection
mechanism. Any non-zero pixels in this map indicate
static pixels and corresponding depth values are fixed
static temporally until another static map is supplied.
Note that this map only indicates areas where the au-
tomatic detection of static pixels is inaccurate, and is
not required at all in some sequences. When drawing
the manual static map it is easiest to use the manual
edge map as starting point and ”flood fill” object areas
(see Fig.2).
Recall that the goal of our method is to improve the
depth such that view synthesis artifacts are reduced,
not necessarily to obtain ”ground truth” depth. There-
fore, we can reduce the amount of manual work by pro-
viding only manual data in the manual disparity and
static maps for areas where this is necessary. For ex-
ample for the manual static map in Fig.2, the auto-
matic detection of static areas is not accurate enough
around the edge of the desk and the thin chair-legs, for
all other static areas the automatic detection was accu-
rate enough.

In our method, the described manual data can be
input for any arbitrary frame. It depends on the se-
quence how many frames, and which frames require
manual input data. For the test sequences used in sec-
tion 4, "Book arrival” and ”Doorflowers” consist of 100
frames, and ”Newspaper” and ”Champagne tower” of
200 frames.

”Newspaper”, we supplied manual data for frame 0 only,

For ”"Book arrival”, ”Doorflowers”, and

for ”Champagne tower” we supplied manual data for
three frames. As an example, the amount of time re-
quired to make the manual disparity map, edge map
and static map of Fig.2, is about 10, 45, and 10 min-
utes respectively. Of course with the use of specially
designed software the amount of manual work could be

greatly reduced.

3.3 Depth estimation by energy optimization
In this section we will describe how the manual in-
put data is used in the Graph Cuts optimization. As
mentioned before, depth estimation can be considered a
labeling, which can be formulated in terms of an energy

function, given by:

E(f) = Z Dp(fp) + Z Vp,q(fpqu) (2)

pEP p,qEN

4 (4)

where D, is the data term and V},, is the smoothing
term. P is the set of all pixels in the image, and N
is the set of direct neighboring pixels p and q. We use
three input views in our depth estimation algorithm to
handle occlusion. As matching cost for the data term
we use pixel matching, or 3-by-3 block matching based
on absolute intensity differences. We obtain the match-
ing cost M, , 4 by calculating the cost between center
and left, and center and right camera, and select the

smallest cost:

My y.q = min(Lcost, Reost),
L(.%' + d> y) - C(CL’, y)”?

Leost = |

where d indicates disparity, C(z,y) is the intensity of
pixel p at (z,y) in the center camera, and similarly R, L,
are the intensity in the right and left camera at (x—d, y)
and (z + d,y), respectively. In the Init Stage(the left
flow in Fig.1), the disparity values of the manual dis-
parity map are used to update the data term of (3). If
the intensity of the manual disparity map Dm(z,y) at
coordinates (x,y) is other than 0" it represents a dis-
parity initialization value, which is used to obtain the

data term as:

Mg ya ifDm(z,y) =0,
D,(fp) = 0 it Dm(z,y) = d, (4)
2My 4. else

For temporal consistency we want to propagate depth
for static pixels. The automatic motion map is obtained
by the Mean Absolute Difference (MAD) of the current
frame and previous frame of the center camera view. It
is used to update the matching cost, similar as in'®, by
a weighted difference of the current disparity and pre-
vious disparity value. For pixels that are detected as
non-static, the matching cost remains unchanged, oth-
erwise the data term is updated based on the manual
static map and the automatically obtained motion map.
Therefore, in Temporal Stage (the right flow in Fig.1),
the data term becomes as follows:

0 a,
Dp(fp) — 2M157y7d b7 (5)

Mw1y7d + |d - DPT'CU(J;7 y)' C,

My y.a else

a:if MS(z,y) = static & d = Dinit(z,y)
b:if MS(x,y) = static & d + Dinit(x,y)
¢ : if motion_map(x,y) = static

where Dinit is the disparity map obtained in the

00000000000 Vol.64, No.11 (2010)



B F F

A|l— B | C
V1 V2
B = Background V1= Smoothing cost A-B
F = Foreground V2 = Smoothing cost B-C

Fig.3 Smoothing between 3 adjacent pixels.

most recent Init Stage, MS the manual static map,
motion_map is the automatic motion map, and Dprev
is the disparity map of the previous frame.

The smoothing term is updated to cut the smoothing
at disparity edges as indicated by the manual edge map,

and is defined as follows:

Vp7q:ﬂ/\|fp*f(1| (6)

where M| f, — f,| is a commonly used smoothing term,
which we scale by scaling factor 8. A is an empirically
chosen smoothing factor, which ranges between 1.0 and
4.0 for our test sequences. If the manual edge map is
defined and indicates an edge, then 8 = 0.1, else it is
1.0. Note that 8 cannot be set to 0, which we will ex-
plain using Fig.3. We consider three neighboring pixels
A,B, and C, with horizontal smoothing term only, as
indicated by V1 and V2 in Fig.3. Here we assume pixel
A is on the background, and pixel B and C belong to
a foreground object. Furthermore, pixel B is indicated
by the manual edge map as on a edge. By setting 3
very low, e.g. B = 0.1, we greatly reduce the smoothing
but the smoothing cost between pixel A and B is still
larger than between pixel B and C (because the dis-
parity jump between A and B is larger), so V1 > V2.
This keeps pixel B and C' weakly connected. If g = 0,
pixel B will be completely isolated from all its neighbors
which is undesirable.

Finally, after obtaining the updated energy function,
the per-pixel disparity map is obtained by Graph Cuts

optimization.
4. Experimental results

To evaluate the performance of our algorithm, we
carry out depth estimation and view synthesis exper-
iments using four MPEG test sequences. For the view-
synthesis we used the MPEG View Synthesis Reference
Software (VSRS version 3.5)'®. For each sequence we
obtain depth videos using automatic depth estimation
and the proposed semi-automatic method and analyze
the depth maps and view synthesis results. We use four
test videos, namely Bookarrival, Doorflowers, Newspa-

per, and Champagne-tower. Fig.4 shows the depth es-
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timation results and the used manual input data for one
frame of all four sequences. Note that the intensity val-
ues in the manual disparity map have been scaled for
better visibility. From Fig.4 it can be clearly seen that
the semi-automatic depth estimation results are much
improved over the automatic results. The disparity ini-
tialization from the manual disparity map propagates to
surrounding areas due to the smoothing term in the en-
ergy definition. The amount of initialization required,
depends on how distinct the data term is. In Fig.4,
the top three rows show results of the Init Stage. Note
that the last row (Doorflowers) shows frame 52, which
is a result of the Temporal Stage. In this Doorflowers
experiment, only frame 0 was initialized using the man-
ual disparity and edge maps as shown in Fig.4, and
the manual static map as shown in Fig.2. The view-
synthesis results for this case is shown in Fig.5. The
view-synthesis artifacts around the chair legs and door
are greatly reduced by the semi-automatic depth esti-
mation.

To show the temporal consistency of our depth maps,
we take 4 consecutive frames of the Bookarrival se-
It can be seen that the
depth propagated from the Init Stage results in much

quence as shown in Fig.6.

better temporal consistency for the static areas like the
background. When compressing both depth maps us-
ing H.264, the rate-distortion plot (see Fig.6b) clearly
shows that the semi-automatic depth is much easier to

compress because it is more temporally stable.
5. Conclusion

In this paper, we have proposed a semi-automatic
depth estimation algorithm based on an energy mini-
mization framework. Our approach is an extension of
an automatic depth estimation algorithm, whereby ad-
ditional manually created data is input for one or multi-
ple frames. The manual data provides disparity initial-
ization, information on object edges, and information
of static areas. In our experiments, we have shown that
our proposed method can generate depth with clear ob-
ject boundaries that is much improved over automati-
cally generated depth, and consequently, view-synthesis
artifacts were reduced. One limitation of our method
is that it cannot cope well with textureless slanted sur-
faces, unless enough disparity initialization is supplied.
In our approach, we rely on the Graph Cuts smoothing
to spatially propagate the disparity initialization val-
ues. Segmentation based depth estimation methods of-

ten use a plane-fitting algorithm (for example'®), which
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could benefit our method too. Another limitation is
that our method is best suited for sequences with lim-
ited motion. If the scene contains a lot of motion, the
temporal algorithm cannot propagate depth into follow-
ing frames much and manual data may be required for
an increasing number of frames. A solution would be
to include motion or optical flow into the algorithm.
To accurately obtain motion especially around object
boundaries is a challenging topic.

Finally, this research is partially supported by Strate-
gic Information and Communications R&D Promotion
Programme (SCOPE) 093106002 of the Ministry of In-
ternal Affairs and Communications. We would like to
thank Heinrich-Hertz-Institut (HHI), for providing the
“Book Arrival”, and “Doorflowers” sequences, and O
Gwangju Institute of Science and Technology (GIST)
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(a)camera view (b)automatic depth (c)semi-automatic depth (d)manual disparity map (e)manual edge map
Fig.4 Left to right: camera view, automatic depth result, semi-automatic depth result, manual disparity
map, manual edge map. Top to bottom:Bookarrival, Champagne-tower, Newspaper, and Door-

flowers.

Fig.5 View-synthesis results of Doorflowers of Fig.4 bottom row. From left to right: ground truth,
results using automatic depth, and results using semi-automatic depth.
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(a)Temporal consistency of four frames of Bookarrival (b)Rate-Distortion plot

Fig.6 (a)Temporal consistency of four consecutive frames for the automatic depth (top row) and the semi-automatic depth (bottom row).

(b)Compression experiment: H.264 RD-plot of all frames of the semi-automatic and automatic depth maps.
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