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Abstract: Edge-preserving filtering is an essential tool for image processing applications and has various types of fil-
tering. For real-time applications, acceleration of its speed is also essential. To accelerate various types of
edge-preserving filtering, we represent various edge-preserving filtering by high-dimensional Gaussian fil-
tering. Then, we accelerate the high-dimensional Gaussian filtering by clustering-based constant algorithm,
which has O(K) order, where K is the number of clusters. The clustering-based method was developed for
color bilateral filtering; however, this paper used it for high-dimensional bilateral filtering. Also, cooperating
with tiling, k-means++, and principal component analysis, we can further improve the filter’s performance.
Experimental results show that our method can approximate various edge-preserving filtering by approximated
clustering-based high-dimensional Gaussian filtering.

1 INTRODUCTION

Edge-preserving smoothing is an essential tool for
image processing and computer vision. The filter-
ing is used in various image processing applications,
such as denoising (Zhang and Gunturk, 2008), deblur-
ring (Dai et al., 2007), detail enhancement (Farbman
et al., 2008), high-dynamic-range imaging (Durand
and Dorsey, 2002), haze removing (Fukushima et al.,
2018), stereo matching (Matsuo et al., 2015), and op-
tical flow (Fujita et al., 2015).

A representative edge-preserving filter is bilateral
filtering (BF) (Tomasi and Manduchi, 1998). The
BF’s kernel composites two kernels: a spatial kernel
for pixel positions and a range kernel for pixel val-
ues. Joint/cross bilateral filtering (JBF) (Eisemann
and Durand, 2004; Petschnigg et al., 2004) is a natural
extension, which uses an additional image for range
kernel computing. Joint bilateral upsampling (Kopf
et al., 2007) utilizes the JBF’s kernel for upsampling.
Dual bilateral filtering (DBF) (Bennett et al., 2007)
also extends the JBF, which uses three kernels for
space, an RGB image, and an IR image. Joint/cross-
trilateral filtering (JTF) has a similar way for depth
map filtering, which uses a depth map instead of us-
ing an IR image for filtering depth map (Mueller
et al., 2010; Matsuo et al., 2013). Vector bilateral
filtering (VBF) is an extension for hyperspectral im-
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ages (Peng and Rao, 2009). Non-local means filtering
(NLM) (Buades et al., 2005) is an extension of BF,
which uses patch vectors instead of color intensities.

In this paper, we summarize these variants of BF
as high-dimensional Gaussian filtering (HDGF). The
HDGF is a convolution filter with a distance not only
in space but also in other dimensions. As typical ex-
amples, the grayscale BF is a 3-dimensional HDGF
for space and intensity value, and the color BF is a
5-dimensional HDGF, which has 3-dimensions in in-
tensity values. The DBF and JTF, including an IR
image or a depth map, are also 3+ 1-HDGF, respec-
tively. n channels hyperspectral images are an n+ 2-
dimensional HDGF. The NLM is a m2 + 2 dimen-
sional HDGF in the case of creating an m×m patch.

The HDGF has several acceleration algorithms.
The accelerated grayscale BF, i.e., 3-dimensional
HDGF, is proposed early, and it becomes fundamen-
tal. The state-of-the-art approaches have O(K) order,
where K is the approximating order, and it is smaller
than the filtering radius D; K << D. We can extend
the specialized approaches for grayscale BF to HDGF,
e.g., color BF. However, as the number of dimensions
increases, the efficiency decreases due to the curse of
dimensionality. The computational order of n chan-
nels BF is O(Kn). Spatial and range downsampling is
a solution; however, these methods do not fundamen-
tally solve the issue.

The clustering-based approaches resolve the curse



of dimensionality. The methods can reduce the com-
putational order O(K), where K is the number of clus-
ters. However, the approximation performance de-
pends on clustering methods. Also, clustering itself
is an overhead to the processing time. The sophisti-
cated clustering (Miyamura et al., 2020), which uses a
tiling strategy and advanced clustering, improves the
performance of 5-dimensional HDGF of color BF, but
the evaluation as the HDGF is not sufficient. The filter
was only evaluated as the color BF.

We often use dimensionality reduction to com-
press signals for accelerating processing, but the veri-
fication of the clustering-based HDGF is not enough.
This paper evaluates the performance of the constant-
time algorithm with clustering for various HDGFs.
Also, we improve the clustering performance by
tiling, K-means++ (Arthur and Vassilvitskii, 2007),
and dimensionality reduction. The contributions of
this paper are as follows:

• We comprehensively deal with various local
smoothing as the HDGF.

• We accelerate various HDGFs by clustering-based
constant-time filtering leveraged by tiling and so-
phisticated clustering techniques.

• We evaluate the dimensionality reduction for var-
ious types of the clustering-based HDGF.

2 RELATED WORKS

1) grayscale BF (3D-HDGF): (Durand and Dorsey,
2002) proposed the early work of accelerating
grayscale BF. This approach decomposes BF into
multiple Gaussian filtering, and fast Fourier trans-
form (FFT) accelerates it. (Paris and Durand, 2006;
Chen et al., 2007) and (Chen et al., 2007) extended
it by representing BF as the HDGF cooperating with
downsampling. (Weiss, 2006) approximated BF by
using histogram, and (Porikli, 2008) reduces the
other to O(K). (Yang et al., 2009) extended Du-
rand’s approach by constant Gaussian filtering (De-
riche, 1992), whose order is also O(K). (Chaud-
hury et al., 2011; Chaudhury, 2013; Fukushima et al.,
2017) proposed a more efficient O(K) method by
raised cosine approximation. Further, (Sugimoto and
Kamata, 2015; Sumiya et al., 2020) sophisticated the
approach by using Fourier series expansion. Also,
eigenvalue decomposition improved the performance
of grayscale BF (Sugimoto et al., 2016a; Papari et al.,
2017) The BF consists of a numerator and denomina-
tor, which requires convolution, individually. (Chaud-
hury and Dabhade, 2016) shared the numerator and
denominator’s convolution. The idea was extended

for Fourier series expansion (Deng, 2017) and singu-
lar value decomposition (Sugimoto et al., 2019).

2) color BF (5D-HDGF): Changing the grayscale
BF to the color BF is not simple. We carefully han-
dle the distance function of color channels, i.e., 1-
dimension to 3-dimension. (Paris and Durand, 2009)
proposed the natural extension from the grayscale BF.
This approach was, however, O(K3); thus, it utilized
downsampling. (Yang et al., 2015) also extended
grayscale one. Recent approaches reduced the num-
ber of the range kernel convolutions (Karam et al.,
2015; Ghosh and Chaudhury, 2016; Tu et al., 2016).

3) nD-HDGF: (Adams et al., 2009; Adams
et al., 2010) proposed a suitable data structure for
the downsampling-based HDGF, which are Gaussian
KD-tree and permutohedral lattice. The order is also
O(kn), but we can more massively downsample data
than (Paris and Durand, 2009; Yang et al., 2015).
Also, (Gastal and Oliveira, 2012) approximated the
HDGF by recursive geodesic filtering, which has
Gaussian-like output, but it has high speed.

Clustering-based constant-time BFs (Mozerov
and van de Weijer, 2015; Sugimoto et al., 2016b;
Nair and Chaudhury, 2019; Miyamura et al., 2020)
are aimed for color BF, but we can use them for the
HDGF. The order is O(k), but it requires an additional
footprint of clustering. (Miyamura et al., 2020) im-
proved the clustering speed and accuracy.

4) non-local means: Non-local means filter-
ing(NLM) (Buades et al., 2005; Buades et al., 2005),
proposed simultaneously with unsupervised informa-
tion theoretic adaptive (UINTA) filter (Awate and
Whitaker, 2005), is regarded as the HDGF. The NLM
requires an entire image for a pixel convolution. Let
patch size P, windows size W , image size N. Naı̈ve
approach, W=N, O(PN2). Restricting the search
to patches in a local neighborhood (Buades et al.,
2005), O(PWN), W << N Random sampling also
reduces the cost (Awate and Whitaker, 2005) using
pre-selected patches (Buades et al., 2005), O(PW ′N),
W ′ << W . Searching the patches by keying means
and variances, mean, and gradients (Mahmoudi and
Sapiro, 2005; Coupé et al., 2006; Kervrann et al.,
2007; Gilboa and Osher, 2007) improve the perfor-
mance. (Brox et al., 2008) used recursive a k-means
build-up cluster tree. This approach used cluster-
ing, but the order is O(PK log(k)N). Instead, the
clustering-based HDGF is O(PKN). Computing inte-
gral images of certain error terms (Wang et al., 2006;
Darbon et al., 2008) had O(PN +WN).

Principal component analysis (PCA) was utilized
for dimensionality reduction for the NLM’s patches
for saving distance computation (Tasdizen, 2008; Tas-
dizen, 2009). We can extend the idea for any HDGF.



3 BILATERAL FILTERING AND
ITS ACCELERATION

3.1 Definition

We firstly define the BF. Let the D-dimensional R-
tone image be f : S 7→ R , where S ⊂ RD is the spa-
tial domain, R ⊂ [0,R]c is the range domain, and c is
the range dimension (generally, D = 2, R = 256, and
c = 3), respectively. Denote p ∈ S as a pixel posi-
tion, fp ∈ R as its intensity vector, and Np ⊂ S as its
neighboring pixels. The BF is defined as follows;

f̄p =
∑q∈Np

ws(p,q)wr(fp,fq)fp

∑q∈Np
ws(p,q)wr(fp,fq)

, (1)

where ws : S×S 7→R is a spatial kernel and wr : R ×
R 7→ R is a range kernel. The kernels are defined
based on the Gaussian distribution;

ws(p,q) = exp
(
−‖q−p‖

2
2

2σ2
s

)
, (2)

wr(fp,fq) = exp
(
−‖fq−fp‖

2
2

2σ2
r

)
, (3)

where σs ∈ R+ is a spatial scale and σr ∈ R+ is a
range scale.

3.2 Clustering-Based Constant-Time
Bilateral Filter

We introduce a clustering-based constant-time bilat-
eral filtering (CBF). The CBF used in this paper
adopts Nyström approximated acceleration of eigen-
value decomposition (EVD) (Nair and Chaudhury,
2019). First, we explain EVD for CBF.

Let T = {fp : p} be a list and let T =
{t1,t2, . . . ,tm} be a ordering of the elements in T ,
where m is the number of elements. This means that,
given l ∈ [1,m], tl = fx for some x ∈ S . We track the
correspondence by an index map: S 7→ [1,m], where

τp = l if tl = fp. (4)

We next define the kernel matrixW ∈Rm×m given by

W (i, j) = wr(ti,t j). (5)

Substituting (5) for (1) gives

f̄p =
∑q∈Np

ws(p,q)W (τp,τq)fp

∑q∈Np
ws(p,q)W (τp,τq)

, (6)

Since it is clear from (5) that W is a symmetric ma-
trix, EVD ofW is as follows;

W =
m

∑
k=1

λkuku
T
k , (7)

where λk(λ1 ≥ λ2 ≥, ...,≥ λm ∈ R) are eigenvalues
and uk is the corresponding eigenvectors. Substitut-
ing (7) to (6) gives

f̄p=
∑q∈Np

ws(p,q)∑
m
k=1 λkuk(τp)uk(τq)fp

∑q∈Np
ws(p,q)∑

m
k=1 λkuk(τp)uk(τq)

, (8)

On switching the sums, this becomes

f̄p=
∑

m
k=1 λkuk(τp)∑q∈Np

ws(p,q){uk(τq)fq}
∑

m
k=1 λkuk(τp)∑q∈Np

ws(p,q){uk(τq)}
. (9)

Let Ŵ ∈Rm0×m0 be the matrix of a low-rank approx-
imation ofW using the top m0(m0�m) eigenvalues
and eigenvectors. Using Ŵ instead of W in (9), the
BF can be approximated as

f̄p≈
∑

m0
k=1 λkuk(τp)∑q∈Np

ws(p,q){uk(τq)fq}
∑

m0
k=1 λkuk(τp)∑q∈Np

ws(p,q){uk(τq)}
.

(10)
In the color case, the number of convolutions is 4m0,
where K in the denominator and 3K in the numerator.

In the grayscale case, the size of the matrix is
256× 256. However, in the color case, the size of
the matrix is 2563. Therefore, direct EVD of W is
difficult. For Nystöm approximation of EVD of W ,
we first construct a small kernel A and then extrapo-
late the eigenvectors of A to approximate those ofW .
A ∈ Rm0×m0 is defined using dominant color vectors
µk determined by clustering as

A(i, j) = wr(µi,µ j) i, j ∈ [1,m0]. (11)

The size of A is much smaller than that of W . Thus,
we can easily compute EVD:

A=
m0

∑
k=1

λkvkv
T
k , (12)

where λk ∈ R and vk ∈ Rm0 . B ∈ Rm0×m is :

B(i, j) = wr(µi,t j) i ∈ [1,m0], j ∈ [1,m]. (13)

This matrix is used to extrapolate uk as follows;

uk =
1
λk
BTvk. (14)

These calculations eliminate the computation of EVD
of the large matrixW .

4 PROPOSED METHOD

This section summarizes various neighborhood filter-
ing as the HDGF. Also, we accelerate it by clustering-
based constant time algorithm. Then we further accel-
erate it by PCA, tiling, and K-means++.



4.1 High-Dimensional Gaussian Filter

The HDGF increases the distance measure’s dimen-
sionality in the range weights of the BF. Let the
n-dimensional input signal be I ∈ Rn and the m-
dimensional guide signal be G ∈ Rm. The HDGF’s
output of Īp at a pixel p is;

Īp =
∑q∈Np

ws(p,q)wh(Gp,Gq)Ip

∑q∈Np
ws(p,q)wh(Gp,Gq)

, (15)

where the kernel wh is defined based on the Gaussian
distribution as follows:

wh(Gp,Gq) = exp
(
−‖Gq−Gp‖2

2
2σ2

r

)
. (16)

The form is similar to (1) that is changing the range
kernel’s argument. When we use n-dimensional vec-
tors for f for (1), the equation is the HDGF; thus, we
can directly use clustering-based CBF as the HDGF.

This form is called joint bilateral filtering (Eise-
mann and Durand, 2004; Petschnigg et al., 2004),
when m = 1,3. When G = I , this is the grayscale
BF and the color BF. This direct representation of the
grayscale BF is the 2+1-dimensional HDGF, and the
color BF is the 2+ 3-dimensional HDGF. When we
use a n-channels hyperspectral image, it becomes the
2 + n-dimensional HDGF. Therefore, we can repre-
sent various neighborhood filtering by changing the
guide signal ofG:

GGBF := {Ig},
GGJBF := {Gg},
GCBF := {IR, IG, IB},
GCJBF := {GR,GG,GB},
GHBF := {G0,G1, . . . ,Gn}, (17)

where GBF is the grayscale BF, GJBF is the grayscale
JBF, CBF is the color BF, CJBF is the color JBF,
HBF is the hyperspectral BF. Ig and Gg are an in-
put grayscale image and an additional guidance im-
age, respectively. I{R,G,B} and G{R,G,B} are a vector
for each RGB components. Gn is a vector of each
component of a n-channels hyperspectral image.

The NLM is also the HDGF. For example, for the
5× 5 patch size, NLM is a 2+ 25 dimensional GF.
The NLM is defined as follows

f̄p =
∑q∈Np

ws(p,q)wr(∑r∈R ‖fp+r−fq+r‖2)fp

∑q∈Np
ws(p,q)wr(∑r∈R ‖fp+r−fq+r‖2)

,

(18)
where R⊂ S is set of patch neighborhood pixels and r
is its element. The form can be represented as neigh-
borhood pixels as high-dimensional vectors. For ex-

ample, 3× 3 patch’s NLM is represented by the fol-
lowing HDGF:

GNLM := {Ig(−1,−1), Ig(−1,0), Ig(−1,1),

Ig(0,−1), Ig(0,0), Ig(0,1),

Ig(1,−1), Ig(1,0), Ig(1,1)},
GCNLM := {IB(−1,−1), IB(−1,0), IB(−1,1),

IB(0,−1), IB(0,0), IB(0,1),

IB(1,−1), IB(1,0), IB(1,1),

IG(−1,−1), IG(−1,0), IG(−1,1),

IG(0,−1), IG(0,0), IG(0,1),

IG(1,−1), IG(1,0), IG(1,1),

IR−1,−1), IR(−1,0), IR(−1,1),

IR(0,−1), IR(0,0), IR(0,1),

IR(1,−1), IR(1,0), IR(1,1)}, (19)

where the GNLM is grayscale NLM and the GNLM is
color NLM. The form can also handle joint filtering,
i.e., we can replace I asG. Also, (x,y) represents the
shift operator, e.g., I(−1,−1) is a vector whose position
is shifted by (−1,−1).

We handle dual bilateral filtering (DBF) or joint
trilateral filtering (JTF) for the other extension. These
filters have an additional kernel for BF expression
of (1) and require both input and guidance signals of
I and G. Also, the input signal and guidance signal
have different characteristics. For example, flash/no-
flash image pair, RGB/IR image pair, RGB/depth im-
age pair, RGB/optical flow pair, RGB/alpha matting
mask, RGB/normal map image pair. The form is rep-
resented by:

Īp =
∑q∈Np

ws(p,q)wr(Gp,Gq)wa(Ip,Iq)Ip

∑q∈Np
ws(p,q)wh(Gp,Gq)wa(Ip,Iq)

,

(20)
where wa is an additional kernel, and is a usually
Gaussian kernel:

wa(Ip,Iq) = exp
(
−‖Iq−Ip‖

2
2

2σ2
a

)
. (21)

For handling different characteristics of the input and
guidance signals, the parameters for each kernel is
different, i.e., σr 6= σa.

We can merge the two Gaussian kernels of wr and
wa by the exponential function’s rules:

wh(Ip,Iq,Gp,Gq)

= exp
(
‖Gq−Gp‖2

2 + t2‖Iq−Ip‖2
2

−2σ2
r

)
,

= exp
(
‖Gq−Gp‖2

2 +‖tIq− tIp‖2
2

−2σ2
r

)
, (22)



where σr = tσa. We can control each parameter by
splitting the smoothing parameters between the orig-
inal image and the additional image by multiplying
the pixel value by t. The input signal I : S 7→ [0,R] is
transformed into I : S 7→ [0, tR]. The original paper of
DBF handles an RGB image and an IR image to filter
the RGB image, and also the CTF paper handles an
RGB image and a depth map to filter the depth map.
For representing the DBF and CTF as the HDGF, the
guidance signals are represented as:

GDBF := {tIR, tIG, tIB, IIR},
GCT F := {IR, IG, IB, tD}. (23)

The DBF and CTF are the 2 + 3 + 1-dimensional
HDGF, including 2D-spatial dimension, RGB range
dimensions, and a IR image or depth map dimen-
sion. The weight control idea can also be applied
for the NLM and the color BF, e.g., using Gaus-
sian patch weighting or handling the important color
channels, such as the green channel. For example,
we can separately set parameter for each dimension
σr = t1σ1 = t2σ2 = · · ·= tnσn.

4.2 Dimensionality Reduction by PCA

The HDGF utilizes PCA for reducing dimensionality.
We compute covariance matrix C for G:

C=(G−Ḡ)T (G−Ḡ)=


σ11 σ12 . . . σ1n
σ21 σ22 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σnn,


(24)

where Ḡ contains mean vectors of G. For simplicity,
Gp+rn = xn,p, Ḡrn = x̄n.

σmn =
1
|Ω| ∑

p∈Ω

(xm,p− x̄m)(xn,p− x̄n) (25)

PCA decomposes the matrix by EVD.

C =V ΛV−1, (26)

where, V is matrix, which contains eigenvectors.
Λ = diag(λ1, . . . ,λn) is a diagonal matrix, which has
eigenvalue with decent order. PCA projection is rep-
resented as:

G′p =VkGp (27)

where Vk has k-components of eigenvectors, and G′p
is the projected guidance signal.

4.3 Tiling with Clustering and PCA
For acceleration, we perform image tiling for
constant-time filtering (Miyamura et al., 2020). The

previous method, which is for color BF, acceler-
ates clustering processing and accelerates convolution
processing in (10). For the clustering method, we
used K-means++ (Arthur and Vassilvitskii, 2007) for
improving the accuracy.

The proposed method requires PCA for guidance
signals; thus, we also perform PCA on tile images in-
stead of entire images. Therefore, tiling accelerates
the computational speed, including convolution, clus-
tering, and PCA. Note that PCA for the tiled image
does not include full image information, but the ef-
fect is not large, verified in experimental results.

5 EXPERIMENTAL RESULTS
We evaluated the approximation accuracy for the
NLM, CTF, and DBF. The accuracy was quanti-
fied as peak signal-to-noise ratio (PSNR) between
approximation and non-approximation results. The
codes were implemented in C++, vectorized by AVX,
and parallelized by OpenMP. We used Visual Stu-
dio 2019’s compiler and Intel Core i7-6700K @
4.00GHz. Also, we divided the image into 4× 4 for
tiling. In our experiments, we set the parameters to
K = 30, σr = 70, and σ′r = 70, respectively, as default
parameters.

Firstly, we evaluated the NLM approximation ac-
curacy. The input image was Lenna (Figure 1a), and
the guidance image’s channels changed from 4 to 10
by PCA from 3×3×3= 27 channels. Figure 1 shows
the filtered images by σr = 70, K = 30 and 4 chan-
nels. Figure 2, 3 (resp. Figure 4) show the accuracy
results (resp. the acceleration results) w.r.t. changing
the number of clusters K or parameter σr with tiling
and without tiling cases. Other parameters are default
parameters. We use averaged PSNR and the calcula-
tion time with 100 trials. From these results, PSNR
is improved by increasing K, σr, and the dimension-
ality. Moreover, we can keep PSNR using tiling in
the HDGF at the highest level, though PCA uses
only local tile information. Also, in the other low-
dimensional approximation, our method has a higher
PSNR than the method without tiling.

Figure 4a is computational time w.r.t. the number
of K and Fig. 4b is one w.r.t. σr. The calculation time
with tiling is faster than without tiling. When σr is
small, the speed is slow, though it is a constant-time
algorithm, because we need to compute quite small
numbers, i.e., subnormal numbers. The same problem
is found in the normal BF (Maeda et al., 2018) cases.

Secondly, we evaluated the CTF. The filtering in-
put image was the depth map of Tsukuba, and the
guidance image was the depth map and the RGB im-



(a) input (b) without tiling (c) with tiling
Figure 1: Input/Output of NLM (Lenna: σr = 70, K = 30).
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Figure 2: K w.r.t PSNR [dB] (NLM approx.: σr = 70). Over
7 channels case, Accuracy is saturated in without tiling.
With tiling, 5 and 6 channels cases are improved.

age of Tsukuba (Fig. 5). The depth map is obtained
from (Scharstein and Szeliski, 2002; El-Etriby et al.,
2007). PCA compressed the 4 channels guide image
from 1 to 3 channels. Figure 5 shows the filtered
images by σr = 70, σ′r = 50 and 3 channels. Fig-
ure 6 shows the accuracy results w.r.t. changing σr
and σ′r. We used averaged PSNR with 1000 trials.
The ground truth image for measuring PSNR was a
4-dimensional HDGF output without PCA. Figure 6a,
in the dimensions compressed to 2 and 3, PSNR is im-
proved by increasing the smoothing parameter σr for
the RGB original image. However, in the dimension
compressed to 1, PSNR is constant at a low value.
PSNR does not depend on σr due to the 1-st compo-
nent of the guide image is mostly the depth map by
PCA. Figure 6b, in the dimensions compressed to 2
and 3, it did not change significantly with increasing
the smoothing parameter of the depth map. In the di-
mension compressed to 1, PSNR degrades with too
large the depth map component.

Finally, we evaluated the DBF. We used Book data
for RGB and IR images. The filtering image was the
RGB image, and the guidance image is the RGB+IR
4 channels image. Figure 7 shows the filtered images
by σr = 40, σ′r = 70 and 3 channels. Figure 8 shows
the accuracy results w.r.t. changing the smoothing pa-
rameters σr and σ′r. We used averaged PSNR with
1000 trials. In the DBF, the compressed guide image
in a dimension is mostly the IR image information
by PCA. However, since the DBF is filtering for the
RGB image, whose color information is mostly deter-
mined by the input image, PSNR can be improved by
increasing the parameters of the IR image.
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Figure 3: σr w.r.t PSNR [dB] (NLM approx.: K = 30).
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Figure 4: K and σr w.r.t time [ms] (NLM approximation
with 4 channels).

(a) RGB image (b) depth map (c) output

Figure 5: Input/Output of CTF (Tsukuba: σr = 70, σ′r = 50,
and 3-dimensional filtering result).
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(a) changing RGB’s range
kernel (fix σ′r = 70)
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(b) changing depth map’s
range kernel (fix σr = 70)

Figure 6: Smoothing parameters w.r.t. PSNR [dB] (CTF
approximation: K = 30).

(a) RGB image (b) IR image (c) output

Figure 7: Input/Output of DBF (Books: σr = 40, σ′r = 70,
and 3-dimensional filtering result).
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Figure 8: Smoothing parameters w.r.t. PSNR [dB] (DBF
approximation: K = 30).



6 CONCLUSIONS
This paper handled several edge-preserving filters
as the HDGF, which includes the NLM, DBF, and
CTF. We also accelerate the various HDGF by the
clustering-based HDGF. Also, we improved the ac-
curacy and computational speed of the HDGF by
PCA, K-means++, and tiling. In our experiments,
the clustering-based HDGF with tiling showed that
its performance is high in the accuracy and speed as-
pects.
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