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ABSTRACT   

K-means is a widely used clustering technique that seeks to minimize the squared distance among points in the same cluster. 

K-means is an appealing clustering method in terms of computational speed. Also, K-means is the simplest clustering; 

thus, researchers select K-means as a first choice. Therefore, accelerating K-means is essential. In this study, we transform 

data structure from the array of structures to the structure of arrays for accelerating K-means by SIMD vectorization. 

Experimental results show that our implementation is faster than OpenCV’s implementation. 
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INTRODUCTION  

The unsupervised classification of patterns into groups, called clustering, is one of the most important tasks in exploring 

and analyzing data [1]. K-means [2] is a well-known clustering technique that is used in various image processing methods, 

e.g., high-dimensional searching [3] and biomedical processing [4]. Also, K-means is used in a part of the acceleration 

method for image filtering [5, 6], such as bilateral filtering [7] and non-local means [8]. The goal of K-means is to 

determine 𝐾 clustering centers that minimize the squared distance among points in the same cluster. Usually, the K-means 

algorithm begins with 𝐾 arbitrary centers chosen randomly from input data points. Each data point is then assigned to the 

nearest center. Then, each center is recomputed as the center of the cluster of all points assigned to it. When the assigned 

clusters for each data point stabilizes, the process terminates.  

K-means is an appealing clustering method in terms of processing speed. Also, K-means is the simplest clustering; thus, 

researchers select K-means as a first choice. Moreover, K-means is used for an initial estimation of more sophisticated 

clustering [9, 10]. Therefore K-means is essential for clustering. 

The main drawback of K-means is initial value dependence. K-means++ [11] is a solution for this problem. In K-means++, 

the initial clustering centers are determined by the probability distribution of the squared distance; thus, K-means++ can 

determine more unbiased initial clustering centers than K-means. K-means++ is widely used, e.g., IBM SPSS Statistics 

[12], scikit-learn [13], and OpenCV [14]. However, the implementation of it is not matured. K-means++ requires more 

processes to determine initial clustering centers than K-means; thus, it requires more processing cost than K-means. 

Therefore, the acceleration of K-means++ is essential. 

In our study, we accelerate K-means and K-means++ by SIMD vectorization. The standard format of image data is 

unsuitable for vectorization; thus, we first transform the image's data structure from the array of structures (AoS) to the 

structure of arrays (SoA). The transformation is realized by matrix transform. Then, we vectorize K-means and K-means++ 

for acceleration. 

 

K-MEANS AND K-MEANS++ 

K-means 

We introduce K-mean clustering in this section. Let 𝑵 ∈ ℝ𝒅 be the number of data points and be 𝑲 ∈ ℝ𝒅 be the number 

of clustering points. K-means aims to minimize the following function: 

arg min
𝒞

∑ min
𝑐𝑗∈𝒞

 ||𝑥𝑖 − 𝑐𝑗||2

𝑥𝑖∈𝒳

,  



 

 

 

 

where 𝑥𝑖 ∈ 𝒳  (𝑖 = 1,2, … , 𝑁) ⊂ ℝ𝑑  is a 𝑑  dimensional data point. 𝑐𝑖 ∈ 𝒞 (𝑖 = 1,2, … , 𝐾) ⊂ ℝ𝑑  is a clustering center, 

called centroid. The problem is NP-hard, and K-means is a heuristic solution. Let 𝐷(𝑥2) be the squared distance between 

𝑥𝑖 ∈ 𝒳 and a target centroid. K-means of Forgy’s method [15], which is a traditional initialization for K-means, is as 

follows: 

1. Randomly select 𝐾 data points as initial centroids. 

2. For all pixels ∀𝑥𝑖 ∈ 𝒳, compute 𝐷(𝑥)2 from each centroid, and then reassign to the cluster that minimizes 𝐷(𝑥)2. 

3. If  𝑐𝑖 with no data points in its cluster exists, change the clustering by following process.  

3-a. Find the biggest cluster, i.e., the cluster with most data points. 

3-b. Find the farthest data points 𝑥̂𝑖 in the biggest cluster. 

3-c. Exclude 𝑥̂𝑖  from the biggest cluster and include  𝑥̂𝑖 in the cluster with 𝑐𝑖 as the centroid. 

4. Repeat step 2 and 3 until the assigned cluster for each 𝑥 no longer changes. 

Step 2 and 3 guarantees to decrease ∑ min
𝑐𝑗∈𝒞

 ||𝑥𝑖 − 𝑐𝑗||2
𝑥𝑖∈𝒳 ; thus, this algorithm makes local improvements to an arbitrary 

clustering until it is no longer possible to do so. Additionally, Lloyd’s algorithm [16] is also a well-known K-means 

implementation. This algorithm starts with K arbitrary centers, typically chosen uniformly at random from the data points 

instead of using step 1 and 2.  

K-means minimizes the local solution; therefore, the method has a high dependence on initial centroids. K-means++ solves 

the issue of initiation. 

 

K-means++ 

We also introduce K-means++. In K-means++, the initial centers are determined by the following procedure instead of 

using random assignment. 

1. Randomly select a data point 𝑥𝑖 as an initial centroid 𝑐0. 

2. For all pixels ∀𝑥𝑖 ∈ 𝒳, compute 𝐷(𝑥)2 from the nearest centering point. 

3. Determine a new cluster center by following process. 

3-a. Randomly select a data point 𝑥𝑖 as a candidate centroid 𝑐𝑖. 

3-b. For all pixels ∀𝑥𝑖 ∈ 𝒳, compute 𝐷(𝑥)2 from the nearest centering point. 

3-c. If ∑ 𝐷(𝑥)2
𝑥∈𝒳  is smaller than before, determine 𝑐𝑖 as a new cluster center. 

3-d. repeat step 3-a, -b and -c several times. 

4. Repeat step 3 until finding the K-th centroid. 

Then, we start step. 2 in K-means. The concept of K-means++ is to position the initial clustering points away from each 

other. 

 

VECTORIZATION OF K-MEANS 

Computing 𝐷(𝑥)2 has the highest processing cost that is in K-means step-3 and K-means++ step-2 and 3. The processing 

order is 𝑂(𝑁𝐾𝑑), where 𝑁 is the number of input data, 𝐾 is the number of clusters, and 𝑑 the number of dimensions of 

input data. Accelerating the part is essential. We accelerate the processing by SIMD vectorization, e.g., SSE, AVX, 

AVX512, and NEON.  In SIMD operation, we load multiple data sequentially with vector length, i.e., SSE (4), AVX (8), 

AVX512 (16), and NEON (4), and then we load the other data for operation is loaded. The two data units of a vector are 

computed once. Therefore, the computation time becomes faster by the SIMD vector length, ideally. 



 

 

 

 

Usually, we prepare input data in the AoS format. For example, the image format is interleaved, i.e., RGBRGB…RGB. 

However, AoS is unsuitable for vectorization, because computing 𝑑 dimensional norm in 𝐷 requires a horizontal operation 

in vectorization for inner-product operations. Also, 𝑛 should be multiple of SIMD vector length, i.e., 4, 8, or 16. If not, we 

need padding to ceil the nearest vector length that is redundant processing or we need to abandon vectorization for the 

overhanging part. The horizontal operation and padding data are inefficient solutions for vectorization, and these cannot 

extract the maximum performance of computers. Note that OpenCV’s implementation uses AoS format, and vectorization 

is realized by “hal” module in its library.  

By contrast, the SoA structure has no restriction for horizontal operation. Also, SoA structure moderates the residual 

processing issue. In SoA, we need the residual processing of padding or no-vectorization for the 𝑑 dimension’s loop. In 

padding for AVX case, data size becomes 𝑁𝑑′, 𝑑′ = 𝑐𝑒𝑖𝑙(𝑑, 8).  AoS also requires residual processing but need for the 𝑁- 

loop. The size is 𝑁′𝑑, 𝑁′ = 𝑐𝑒𝑖𝑙(𝑁, 8) . Usually,  𝑁 ≫ 𝑑 and 𝑁 is a large number, so 𝑁′/𝑁 ≅ 1. 𝑑 is not a large number 

𝑑′/𝑑 > 1, e.g., 3-dimensional case, the ratio is 8/3=2.667.  

The transformation is realized by matrix transpose. A N-rows-d-cols matrix becomes d-rows-N-cols matrix. For example, 

when input data are a color image, the data are rearranged from RGB format to RRR…GGG…BBB format by 𝑁 × 3 

matrix transpose. 

EXPERIMENTAL RESULTS 

We demonstrate the effectiveness of our implementation. We used the output image of 𝑐𝑣: : 𝑘𝑚𝑒𝑎𝑛𝑠 in OpenCV as the 

answer image of K-means and K-means++. The code was written in C++ and vectorized by AVX/AVX2. The test CPU 

was Intel Core i9-9900K 3.60 GHz, 8-cores/16-threads. The test image size was 512 × 512. 

Figure 1 shows the processing time of our implementation, scikit-learn’s and OpenCV’s one. The proposed implementation 

can suppress the processing time than scikit-learn and OpenCV. 

Figure 2 shows the average of squared distance 𝐷(𝑥2) in our implementation and OpenCV’s one. Moreover, 𝐷(𝑥2) of the 

proposed method is nearly equal to K-means and K-means++ of OpenCV, respectively.  

In these figures, our proposed method can cluster more properly with suppressed computational time. 

 

 

Figure 1. Processing time of K-means++ implemented by ours and OpenCV (𝑁 = 512 × 512, 𝑑 = 3). 𝑥-scale is log2. 



 

 

 

 

 

 

Figure 2. The average of 𝐷(𝑥2) implemented by ours and OpenCV (𝑁 = 512 × 512, 𝑑 = 3). 𝑥-scale is log2. 

 

 

CONCLUSION  

In this study, we transform the input data structure from AoS to SoA. Moreover, we effectively implement K-means++ by 

vectorization. The experimental results show that our implementation of K-means is about 3.03 and 1.53 times faster than 

OpenCV and scikit-learn in 𝐾 = 256, respectively. Moreover, in K-means++, our implementation is about 3.62 and 2.47 

times faster than OpenCV and scikit-learn in 𝐾 = 256, respectively. In terms of clustering accuracy, our implementation 

is nearly equal to OpenCV’s one. Therefore, our method can compute clustering correctly with suppressed processing time. 
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