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Abstract—We propose a domain-specific language for finite
impulse response (FIR) filters using a randomized algorithm. FIR
filters such as Gaussian and bilateral filters are fundamental tools
for signal processing and image processing. The computational
time of these convolutions increases as the convolution kernel size
becomes more extensive because the computational time depends
on the kernel size. Approximating the kernel by random sub-
sampling is one of the methods to reduce the computational time.
The advantage of this approximation is easily controllable for the
balance between its approximation accuracy and computational
time. However, it is tricky to optimize this approximation to
suit the multi-core and SIMD instructions provided in recent
CPUs. Halide is a domain-specific language for image processing
and can powerfully accelerate image processing with a concise
description. One of the remarkable points of Halide is that it can
be described as a separate description of the algorithm, which is
the essence of image processing, and scheduling, which optimizes
the processing such as parallelization and vectorization. Using
Halide, we optimize the approximation of the FIR filter by the
randomized algorithm. Also, we design a new domain-specific
language that outputs the optimized Halide code in a concise
description.

I. INTRODUCTION

Approaching the end of Moore’s law, the computing archi-
tecture of computing units increases complexity. The complex
hardware makes code optimization hard to maximize its per-
formance. A domain-specific language (DSL) is one of the
solutions. DSL for image processing is a hot topic, and various
languages are proposed, such as Halide [1], Darkroom [2],
PolyMage [3], [4], [5], G-API in OpenCV, and the other
DSL [6], [7], [8], [9]. Halide [1] is a representative image
processing DSL, and continuously developed [10], [11], [12],
[13]. Halide can divide codes into two parts: an algorithm part
and a scheduling part. The former specifies what to execute,
and the latter determines how to execute the algorithm.

Changing only the scheduling part, we can optimize the
code for the specific hardware, such as CPU (x86, ARM,
MIPS, Hexagon, PowerPC, and Xeon Phi) and GPU (CUDA,
OpenCL, and OpenGL). The following researches extend
Halide to have MPI backend [14], DSP backend [15], and
FPGA[16], [17]. For CPU backend, the Halide compiler trans-
forms codes into LLVM IR (intermediate representation) [18]
for low-level code generation and memory efficiency optimiza-
tion, which improves CPU backend performance [19].

This study focuses on finite impulse response (FIR) filtering,
an essential process in signal processing and is represented
as a convolution. The FIR filter is the base for smoothing
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and edge detection processes in computational photography,
computer graphics, and computer vision. The FIR filter usually
exhibits O(Sr2) order, where S is the image size, and r
is a filtering radius. If the kernel has separability, we can
reduce the other into O(Sr). For the filtering is linear time-
invariant filtering, we can use fast Fourier transform (FFT)
to reduce the order into O(S logS). Also, when the kernel
is Gaussian, we can use short-time frequency transform to
reduce the order into O(SK) [20], [21], where K < r
is the approximation order. For more specific cases, O(S)
implementation is available, such as bilateral filtering [22],
[23], [24], [25], [26], guided image filtering [27], [28], and
high dimensional Gaussian filtering [29], [30], [31], [32], [33],
[34], [35]. These cases require strict conditions for convolution
kernels for order reduction.

One way to reduce the computational order for arbitrary
kernel convolution is to approximate the kernel by sub-
sampling randomly [36], [37]. This method reduces the order
into O(S log r2) and accelerates any FIR filter. The remarkable
point of this approximation is easily controllable for the
balance between its approximation accuracy and computa-
tional order. However, handling the randomized convolution in
Halide requires a redundant description. For this case, defining
a new operation is essential. For example, paper [38] adds
a function of “rfactor” to handle the parallelization and the
vectorization for Halide reduction operation.

In this paper, we optimize the FIR filter with a randomized
algorithm using Halide. Then, we propose a new DSL descrip-
tion, which outputs the optimized Halide code by a concise
description. We add a new description of RandConv for
randomized convolution. Furthermore, the experimental result
shows that our new DSL can describe a high-performance FIR
filter with high efficiency.

II. PRELIMINARY

A. FIR Filter

We first define FIR filter. Let two dimensional R tone image
be I : S 7→ R, where S ⊂ R2 is the spatial domain,
R ⊂ [0, R]c is the range domain, and c is the range dimension
(generally, R = 256, and c = 1, 3), respectively. Let pixel
position be p ∈ S, and its intensity vector be Ip ∈ R.
FIR filtering with neighborhood pixels Np ⊂ S is defined
as follows:

Īp =
1

η

∑
q∈Np

fp,qIq, (1)



1 Func blur 3x3(Buffer<uint8 t> src)
2 {
3 Func clamped, blur x, blur y;
4 Var x, y, xi, yi, xo, yo;
5
6 // algorithm part
7 clamped = BoundaryConditions::repeat edge(src);
8 blur x(x,y)=(src(x−1, y)
9 +src(x, y)+src(x+1, y))/3;

10 blur y(x,y)=(blur x(x−1,y)
11 +blur x(x,y)+blur x(x+1,y))/3;
12
13 // scheduling part
14 blur y.tile(x, y, xo, yo xi, yi, 32, 32)
15 .vectorize(xi, 8).parallel(yo);
16 blur x.compute at(blur y, xo).vectorize(xi, 8);
17
18 return blur y;
19 }

Fig. 1. Halide code of 3× 3 box filtering for CPU backend.

where Īp is an output intensity value, p, q is a target pixel
and a reference pixel. fp,q is convolutions weights, which is
dependent on filtering. When the weight is only defined by
spatial distance, fp,q : S × S 7→ R. When the weight is only
defined by intensity distance, fp,q : R × R 7→ R. η is a
normalization term, which is generally the sum of the weights
in the kernel.

In the FIR filtering, all pixels in the kernel are referenced.
Most reference pixels in natural images tend to have similar
values around neighboring pixels. The similarity indicates that
referencing pixels is redundant processing. Therefore, a sub-
sampling of the kernel is considered to be possible. Kernel sub-
sampling could be defined by substituting N for M , where M
represents the set of randomly selected pixels. When |M | <<
|N |, acceleration is expected.

The weight functions are static for Linear time-invariant
(LTI) filters: Gaussian, Laplacian, Gabor, and Sobel. These
kernel and normalization terms can be precomputed. On the
other hand, weight functions are dynamically changing for
linear time-variant (LTV) filters: adaptive parameter filtering
and edge-preserving filtering. LTV filter’s weight cannot be
precomputed because their weights vary spatially. The sub-
sampling kernel greatly accelerates the LTV filtering since the
weights should be calculated for each pixel.

B. Halide

Halide [1], [10], [11], [12] is a major DSL for image
processing. The language is a pure-functional language em-
bedded in C++. Halide can separately describe the code in
algorithm parts and scheduling parts. The algorithm parts show
the essence of processing and are a hardware-independent
description. The scheduling parts reveal the computational
order and computational method. The former example is
scanning-loop order, and the latter examples are vectorization
and parallelization.

Figure 1 shows the Halide code of 3 × 3 box filtering for

CPU backend. The “Func” represents a pipeline stage. It is
a pure function that defines what value each pixel should
have. The “Var” is the name to be used as variables in the
definition of a Func. The “Buffer src” represents an input
image, and its boundaries are extended by a method in the
“BoundaryConditions” namespace. The variables “Var x,y”
show x and y coordinates of images and functions, and the
other variables are used for the same purpose. In the algorithm
parts, we horizontally average the clamped image “clamped”,
and then vertically mean the averaged image. In scheduling
parts, computational scheduling is defined in each Func by
calling various class methods, e.g., “tile”, “vectorize”, “paral-
lel”, and “compute at”. The tile method splits the image into
32×32 tiles by inner and outer variables. The vectorize method
orders vectorized computing with single instruction, multiple
data (SIMD) units: MMX, SSE, AVX, AVX-512, and NEON.
This method vectorizes pixels along the xi loop. The parallel
method shows multi-thread computing with multi-core/thread
CPU, and the scheduling parallelizes along the yo loop. The
compute at method indicates how to memorize computed
results, and we compute and memorize “Func blur x” on
xo loop of “Func blur y” under the schedule. In the default
schedule, no computation is memorized, i.e., all functions are
inlined.

Halide is utilized for more complex image filtering, such
as guided image filtering [16], weighted median filtering [39],
and IIR filtering [40], [41], [42]. Furthermore, Halide’s com-
piler is also applied to the field of machine learning. In
work [12], Halide is extended to a differentiable programming
language. Halide IR is used in TVM, a compiler for deep learn-
ing and the foundation of various deep learning frameworks.
OpenCV, an image processing library, uses Halide as a back-
end for its deep learning module. Halide’s pipelines are also
run in Google’s machine learning library TensorFlow, Google
photo, Youtube, Pixel Visual Core in Google’s smartphone
Pixel 2, Adobe’s Photoshop, and various other applications.

C. Description of FIR filter in Halide

1) Algorithm Part: In Halide, the convolution computing
is described using “RDom”, called the reduction domain.
Halide’s Func has two types of definitions: pure definition,
which is a mapping from Var to an Expr (which represents the
expression), and update definition, which updates a function’s
values. RDom is used in the latter of the update definition.

Figure 2 shows the Halide’s algorithm code of bilateral filter
for the grayscale image, which is an example of the LTV
convolution. The bilateral weight is defined as follows:

fp,q := exp

(
‖p− q‖22
−2σ2

s

)
exp

(
‖I(p)− I(q)‖22

−2σ2
r

)
, (2)

where ‖ ·‖2 is the L2 norm, σr and σs are standard deviations
for range and spatial distributions, respectively. In the code,
“Func conv” and “Func norm” represent the function of the
convolution and the calculation of the normalization term, re-
spectively. RDom has internal parameters “min” and “extent”,
and iterates computing from min to min+extent. “RDom r” is



1 Buffer<float> input = load image();
2 Var x, y;
3
4 // Algorithm part
5 Func conv, norm, output, clamped;
6 RDom r(−R, 2*R+1, −R, 2*R+1);
7
8 clamped = BoundaryConditions::repeat edge(input);
9 Expr ds = −1.f / (2.f*sigma s*sigma s);

10 Expr ws = exp((r.x*r.x + r.y*r.y)*ds);
11 Expr dr = −1.f / (2.f*sigma c*sigma c);
12 Expr wr = exp((clamped(x+r.x, y+r.y) − clamped(x, y))*(

clamped(x+r.x, y+r.y) − clamped(x, y))*dc);
13 Expr weight = ws*wr;
14
15 // pure definitions
16 conv(x, y) = 0.f;
17 norm(x, y) = 0.f;
18 // update definitions
19 conv(x, y) = conv(x, y)
20 + weight*clamped(x+r.x, y+r.y);
21 norm(x, y) = norm(x, y) + weight;
22
23 // define output
24 output(x, y) = conv(x, y) / norm(x, y);

Fig. 2. Halide algorithm code of bilateral filter.

1 for y:
2 for x:
3 conv(x, y) = 0.f
4 for y:
5 for x:
6 for r.y in [−R, R]:
7 for r.x in [−R, R]:
8 conv(x, y) = conv(x, y) + weight*clamped(x+r.x, y

+r.y)

Fig. 3. Pseudocode of loop structure of “conv”.

the reduction domain, which iterates -R to 2*R+1 in x and
y dimensions. Reduction domains can be defined in multiple
dimensions, and a loop over the reduction domain is generated
for each dimension. Figure 3 shows a loop structure of “Func
conv” in pseudocode.

2) Scheduling Part: Figure 4 shows Halide’s scheduling
code for the bilateral filter. Input image is devided into
sub-images whose size is tile w × tile h. Then, the sub-
images are processed in parallel for acceleration. Scheduling
method compute root specifies that all reference values will
be pre-evaluated and stored. Therefore, the “clamp” that is
an input image with extended edges should be specified
as compute root. The “conv” and “norm”, which perform
summation calculation, have the same loop structure. Thus, it
is more efficient to merge the loops, so compute with operator
is used to merge the loop between the two functions. The loop
structure generated by the above scheduling is shown in Fig. 5
by pseudocode. Expressions x and y convert inner-variables
and tile index to the original x and y appropriately.

1 // Scheduling part
2 Var xi, yi, tile index;
3
4 clamped.compute root();
5 output.compute root().tile(x, y, xi, yi, tile w, tile h)
6 .fuse(x, y, tile index).parallel(tile index).parallel(yi);
7 conv.compute at(output, xi);
8 norm.compute at(output, xi).compute with(conv, x)
9 .update().compute with(conv.update(), r.x);

Fig. 4. Halide scheduling code of bilateral filter

1 produce clamped:
2 for y:
3 for x:
4 clamped(x, y) = ...
5 consume clamped:
6 produce output:
7 parallel for tile index:
8 parallel for yi:
9 for xi:

10 produce conv, norm:
11 conv( x, y) = 0.f
12 norm( x, y) = 0.f
13 for r.y in [−R, R]:
14 for r.x in [−R, R]:
15 conv( x, y) = conv( x, y) + weight( x, y, r.x, r.

y)*clamped( x+r.x, y+r.y)
16 norm( x, y) = norm( x, y) + weight( x, y, r.x,

r.y)
17 consume conv, norm
18 output( x, y) = conv( x, y)/norm( x, y)

Fig. 5. Pseudocode of scheduled bilateral filter’s loop structure.

III. PROPOSED METHOD

This paper proposes a description of the FIR filter with a
randomly sub-sampling approximation using Halide. We also
design a new DSL, which internally generates the optimized
Halide code for the randomized FIR filter. Our DSL achieves
an acceleration of the FIR filter with concise descriptions.

A. Kernel sub-sampling with Halide description

In Halide, kernel sub-sampling is implemented by reducing
loops in RDom. We indicate a description, which combined a
look-up table (LUT) of sub-sampled points and RDom.

When using sub-sampling kernels, it is vital to use the
different random seeds for subsampling neighboring pixels to
prevent streaking noise [36], [37]. Let the number of sampling
points be n = (X,Y ) ∈ S , and let the number of sampling
patterns be m ∈ N. First, we randomly select n points,
(X00, Y00), (X01, Y01), . . . , (X0n−1, Y0n−1), according to
some random selection algorithm, e.g., pure random sampling,
Gaussian sampling. Then, we also randomly select n points,
(X10, Y10), (X11, Y11), (X12, Y12), . . . , (X1n−1, Y1n−1),
in the same selection algorithm. By repeating this
operation m times, we can select m pattern of n points,
(Xm0, Ym0), (Xm1, Ym1), (Xm2, Ym2), . . . , (Xmn−1, Ymn−1),
and these are stored in a LUT including sub-sampled
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Fig. 6. LUT for kernel sub-sampling (n = 6,m = 4).
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Fig. 7. How to select a sub-sampling pattern.

points. Figure 6 shows an example of the LUT created
in n = 6,m = 4. The LUT is a three-dimensional array
consisting of a set of sampled points arranged in rows. The
LUT is implemented as “Buffer<int> LUT”, where LUT(i, j,
0) indicates i-th x-coordinate selected in pattern j, and LUT(i,
j, 1) indicates i-th y-coordinate selected in pattern j.

Second, we prepare a table for selecting sampling patterns.
This table has the same size as the input image and is randomly
selected from 0 to m − 1 for each value. We select a sub-
sampling pattern from the value in the table that is the same
coordinate as the target pixel. Figure 7 illustrates the procedure
for selecting a sub-sampling pattern using the pattern table.
The table is also implemented by “Buffer<int> pattern”.

Finally, using the “LUT”, “pattern”, and a one-dimensional
“RDom r dash”, which iterates from 0 to n − 1, the kernel
sub-sampling is implemented by replace the original “RDom
r” in Fig. 2 as follows:

line-10,12,20: r.x → LUT(r dash, pattern(x, y), 0)
line-10,12,20: r.y → LUT(r dash, pattern(x, y), 1)

Furthermore, for “norm” scheduling, we change the
“compute with” in the update definition to “compute with
(conv.update(), r dash)”.

B. DSL for FIR filter using randomized algorithm

We designed a new DSL to provide random kernel sub-
sampling for the FIR filter in a concise description. Our DSL is
built on Halide with a shorter description and easily optimizes
codes. A sample code of the proposed DSL for the grayscale
bilateral filter is shown in Fig. 8. For the DSL, we created
new classes RandConv to extend the Halide functionality. The
RandConv is a body function of the randomized convolution
of FIR filtering.

The user’s first step is to initialize RandConv by specifying
the input. Then, users define weight expressions of the FIR

1 Buffer<float> input = load image();
2 Var x, y;
3
4 RandConv bf("BilateralFilter");
5 bf(x, y) = input(x, y); // initialization
6
7 // define kernel
8 RDom r(−rad, 2 * rad + 1, −rad, 2 * rad + 1);
9 Expr ds = −1.f / (2.f * sigma s * sigma s);

10 Expr s kernel = exp((r.x * r.x + r.y * r.y) * ds);
11 Expr dr = −1.f / (2.f * sigma c * sigma c);
12 Expr r kernel = exp(fast pow(input(x + r.x, y + r.y) − input

(x, y), 2) * dc);
13
14 bf.add kernel({ s kernel, r kernel } );
15 bf.bound(x, image width).bound(y, image height)
16 .randomize<uint8 t>(r, 30, 4, RandConv::SampleMethod

::Gaussian, 4.f);
17 bf.realize(output);

Fig. 8. RandConv code for bilateral filter

filter and add them to RandConv by add kernel operator. The
add kernel operator takes vector<Expr > as an argument so
that the kernel weight can be divided into multiple parts. Each
added weight is discriminated as spatially varying or not, and
different scheduling is applied to each. Also, the weight used
in the filtering is the product of the divided weight parts.
Finally, the size of each dimension is given to RandConv by
bound operator, and randomization is applied by randomize
operator. The arguments of randomize operator are the RDom
to be sub-sampled, the number of sampling points, the number
of sampling patterns, the value for specifying the sampling
algorithm, and the sigma value for Gaussian sampling (op-
tional). In the example shown in Fig. 8, the sampling algorithm
is specified according to a Gaussian distribution with sigma
equal to 4. Users can specify that the output should be cast to
an arbitrary type by implementing the randomize operator as
a template method.

The RandConv code in Fig. 8 generates a Halide function,
which is almost equivalent to the kernel sub-sampled bilateral
filter mentioned in Sec. III-A. The construction of the internal
functions of RandConv is handled in the randomize operator.
In the randomize operator, the kernel weights added in the
add kernel operator are classified into two parts: spatially
varying weights or non-varying weights depending on whether
the weight’s expression includes the Halide’s Var used in the
input image or not. If the Var is included in the weight’s
expression, it is a spatially varying weight. For a class with
the spatially non-varying weights, define the Halide’s Func as
a product of weights in the class and specify compute root. If
all weights are spatially non-varying, the normalization term
should also be specified compute root since it is possible to
pre-evaluate.

Next, we substitute the RDom in the weight expression, as
shown in Sec. III-A. Creating the LUT for the sampled points
is based on the random selection algorithm specified in the ar-
gument. Moreover, substitute “r dash” with temporary Var and



Table I
SPECIFICATIONS OF COMPUTER.

OS Windows 10 Enterprise
CPU AMD Ryzen Threadripper 3970X @ 3.7-4.5GHz (64threads)
RAM 64GB, DDR4-2666 (1333MHz)

BUILD Microsoft Visual Studio Professional 2019

Table II
PARAMETERS SET

radius of kernel 30
number of sampling pattern 4
tiling size 256× 256
sampling algorithm Gaussian distribution

(a) input (b) output: sub-sampled (c) output: naı̈ve

Fig. 9. Input and Outputs of bilateral filter in Halide.

this Var add to the argument of the weight function because
Halide’s Func does not allow using the reduction domain in
its pure definition. Using the weight functions, define multiple
objects of Func for computation of the convolution and the
normalization term. The weight functions are referenced using
“r dash” in the temporary Var part. Finally, define a Func to
divide the convolution and normalization term with a cast to
the specified type.

IV. EXPERIMENTAL RESULTS

The input images are 512 × 768 grayscale images, and
an example is shown in Fig. 9a. The specifications of the
computer used in the experiment are shown in Table I. Also,
the filtering parameters set are shown in Table II.

Figure 10 shows kernel sub-sampled bilateral filter in pure
Halide implemented by us. Figure 11 shows the generated
Halide Func code by our DSL code shown in Fig. 8. Compar-
ing with direct implementation of Figure 10, our RandConv
code 8 and naı̈ve BF code 2 are simpler and have almost
the same complexity. In addition, our DSL takes 60 percent
less code than the direct implementation. Also, the loop
structure generated by our DSL is shown in Fig. 12. Our
DSL generates each definition of Halide Func for efficient
randomized convolution.

Figure 13a shows a comparison of the computational time
among our DSL, direct implementation of kernel sub-sampled
bilateral filtering, and the full convolution, i.e., naı̈ve imple-
mentation in Halide. Our DSL is faster than the direct im-
plementation due to the pre-evaluate of spatially non-varying

1 Buffer<float> input = load image();
2 Var x, y;
3 int rad = 30;
4 int pattern num = 4;
5 int sampling num = sampling ratio*(2*rad+1)*(2*rad+1);
6 // Preparation for randomize

implementation
7 Buffer<int> LUT(sampling num, pattern num, 2);
8 LUT = Gaussian sampling(sampling num, pattern num,

sigma);
9 Buffer<int> pattern(input.width(), input.height());

10 pattern = make pattern table(pattern.width(), pattern.height
(), pattern num);

11 RDom r dash(0, sample num, "r_dash");
12 Expr randx = LUT(r dash, pattern(x, y), 0);
13 Expr randy = LUT(r dash, pattern(x, y) 1);
14
15 // Algorithm part
16 Func conv, norm, output, clamped;
17 RDom r(−R, 2*R+1, −R, 2*R+1);
18 clamped = BoundaryConditions::repeat edge(input);
19 Expr ds = −1.f / (2.f*sigma s*sigma s);
20 Expr ws = exp((randx*randx + randy*randy)*ds);
21 Expr dr = −1.f / (2.f*sigma c*sigma c);
22 Expr wr = exp((clamped(x+randx, y+randy) − clamped(x, y)

)*(clamped(x+randx, y+randy) − clamped(x, y))*dc);
23 Expr weight = ws*wr;
24 // pure definitions
25 conv(x, y) = 0.f;
26 norm(x, y) = 0.f;
27 // update definitions
28 conv(x, y) = conv(x, y)
29 + weight*clamped(x+randx, y+randy);
30 norm(x, y) = norm(x, y) + weight;
31 // define output
32 output(x, y) = conv(x, y) / norm(x, y);
33
34 // Scheduling part
35 Var xi, yi, tile index;
36 clamped.compute root();
37 output.compute root().tile(x, y, xi, yi, tile w, tile h)
38 .fuse(x, y, tile index).parallel(tile index).parallel(yi);
39 conv.compute at(output, xi);
40 norm.compute at(output, xi).compute with(conv, x)
41 .update().compute with(conv.update(), r dash);

Fig. 10. Direct implementation code fot randomized bilateral filter.

weights. PSNR result for outputs of our DSL, measured as the
output of naı̈ve bilateral filter for a correct image, is shown
in Fig. 13b. According to the PSNR result, our DSL achieves
the same approximation accuracy as the direct implementation.
Also, the computational time is about half even with a high
approximation accuracy (over 50dB). Figures 9b and 9c show
the output of sub-sampled bilateral filter in sampling ratio
0.1 and naı̈ve bilateral filter, respectively. At this time, PSNR
is 47.3 dB, almost imperceptible to the naked eye between
the two outputs. Thus, we consider that implementation of
kernel sub-sampling by Halide approximates and accelerates
the processing.

These results show that our DSL implements kernel sub-
sampling of the FIR filter by a concise description.



1 {
2 Func BilateralFilter("BilateralFilter");
3 Var x("x"), y("y");
4 BilateralFilter(x, y) = uint8(((float32)conv(x, y)/(float32)

norm(x, y)));
5 }
6 {
7 Func non spatially("non_spatially");
8 Var temp r("temp_r"), p("p");
9 non spatially(temp r, p) = (let t207 = LUT(temp r, p, 0)

in (let t208 = LUT(temp r, p, 1) in (float32)exp f32(
float32(((t207*t207) + (t208*t208)))*−0.005000f)));

10 }
11 {
12 Func norm("norm");
13 Var x("x"), y("y");
14 norm(x, y) = 0.000000f;
15 norm(x, y) = ((float32)norm(x, y) + (float32)weight(x, y,

sampling rdom$x));
16 }
17 {
18 Func conv("conv");
19 Var x("x"), y("y");
20 conv(x, y) = 0.000000f;
21 conv(x, y) = (let t214 = max(min(pattern(x, y), 3), 0) in ((

float32)conv(x, y) + ((float32)weight(x, y,
sampling rdom$x)*(float32)input$1(x + LUT(
sampling rdom$x, t214, 0), y + LUT(
sampling rdom$x, t214, 1)))));

22 }
23 {
24 Func weight("weight");
25 Var x("x"), y("y"), temp r("temp_r");
26 weight(x, y, temp r) = (let t209 = max(min(pattern(x, y),

3), 0) in (let t210 = ((float32)input(x + LUT(temp r,
t209, 0), y + LUT(temp r, t209, 1)) − (float32)input(
x, y)) in ((float32)non spatially(temp r, t209)*(
float32)exp f32((t210*t210)*−0.005000f))));

27 }

Fig. 11. Halide code generated by RandConv.

V. CONCLUSION

This paper discussed the description of efficient FIR fil-
tering and proposed the kernel sub-sampling of FIR filtering
in Halide. We designed a new DSL, i.e., RandConv, that
generates the Halide code of the proposed kernel sub-sampled
FIR filter by a concise description. As an experiment, we
implemented a bilateral filter using our DSL. The experimental
results show that our DSL accelerates a naı̈ve implementation
of a bilateral filter with sufficient approximation accuracy.
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