

Halide implementation of weighted median filter

Akari Ishikawa, Hiroshi Tajima, and Norishige Fukushima

Nagoya Institute of Technology, Nagoya, Japan

ABSTRACT

With the recent extension of camera applications, image filtering is essential in image processing. Weighted median

filtering is one of the image denoising method. The weighted median filter can be more useful for removing noise and

blurring correction; however, its computational cost is high. Halide is a domain-specific language for image processing.

By using Halide, we can easily optimize the code of image processing. In this study, we present weighted median filter

with Halide code. Experimental results show that we can easily write the weighted median filter code.

Keywords: Halide, domain-specific language, median filter, weighted median filter

1. INTRODUCTION

With the recent extension of camera applications, image filtering is essential in image processing, such as image

denoising and detail enhancement. Edge-preserving filtering is important for such applications, such as median filtering1

and its variants2,3, bilateral filtering4 and its acceleration methods4-9, non-local means filtering10, guided image

filtering11.12, domain transform filtering13, and recursive bilateral filtering14.

The most of these filters are categorized into finite impulse response (FIR) filtering and infinite impulse response (IIR)

filtering. These filters have some efficient ways to write efficient codes of FIR15-17 and IIR18 filtering. However, statistic

filtering, such as median filtering, has complex computing order; thus, optimizing the statistic filtering is hard. Median

filtering1 is one of the statistic filtering for image denoising. The median filter replaces a pixel with the median value of

the pixel’s kernel. Also, weighted median filtering2, 3 is an extension of the median filter. The filter had weights to each

pixel in the kernel for statistic computing values. The difference between the two filters is the removal capability of the

impulsive noise. The weighted median filter can be more useful for removing noise and blurring correction. The

drawback of the weighted median filter is its computational complexity.

Approaching the end of Moore’s law, CPU microarchitectures become more complex year by year; therefore, it is

difficult to write programs suited to each execution environment. Halide is one of a solution to this problem. The

Halide20-23 is a domain-specific language (DSL) for image processing and a pure functional language but embedded in

C++. Halide code is modularized as algorithm parts and scheduling parts. By using Halide, we can easily optimize the

code of image processing by the modularization. In addition, the language is extended for recursive filtering24 and

FPGA25.

In this paper, we focus on the statistic filtering of median filtering, and present algorithm parts of the median and

weighted median filter written in Halide. The implemented code is easy for us to write the weighted median filter code.

Also, only by adding the Halide scheduling code on this weighted median filter, we can efficiently parallelize the filter by

slightly modifying the code.

2. HALIDE

The Halide code is modularized as algorithm parts and scheduling parts. This makes the optimization of the Halide code

flexible. The algorithm parts show the image processing algorithm, and the scheduling parts reveal the computational

order and computational method, e.g., loop-unrolling, loop-interchanging, loop-fission/fusion, loo-splitting, loop

collapsing, tiling, vectorization, and parallelization.

Figure 1 shows the Halide code of 3×3 box filtering. Func indicates equations and Var shows variables. “Func f”

represents an input image, and “Var x, y” show x and y coordinates of images, respectively. In the algorithm parts, we

horizontally average the input image f, and then vertically mean the averaged image. In the scheduling parts,

computational scheduling is defined for each equation of Func by calling various class methods, e.g., tile, vectorize,

parallel, and compute_at. tile points image tiling, and the scheduling splits the image into 256×32 tiles. vectorize orders

vectorized computing with SIMD units, e.g., SSE and AVX, and this vectorizes pixels along the x loop. parallel shows

multi-thread computing with multi-core/thread CPU, and the scheduling parallelize along the y loop. compute_at

indicates how to memorize computed results, and we compute and memorize “Func blur_x” on x, y in ranged

computation of “Func blur_y” under the schedule. In the default schedule, no computation is memorized, i.e., all

functions are re-computed.

Func blur 3x3(Func f)

{

Func blur_x , blur_y;

Var x , y , xi , yi;

// algorithm part

blur x (x , y) = (f(x−1, y) + f(x, y) + f(x+1, y)) / 3;

blur_y (x, y) = (blur_x(x, y−1) + blur_x(x, y) + blur_x(x, y+1)) / 3;

// scheduling part

blur_y.tile (x, y, xi, yi ,256, 32).vectorize(xi, 8).parallel(y);

blur_x.compute_at(blur_y, x).vectorize(x, 8);

return blur_y;

}

Figure 1. Halide code of 3×3 box filtering.

3. IMPLEMENTATION

Figure 2 shows the algorithm parts of the weighted median filter with bilateral filter’s weight3 written in Halide. Note

that we do not write the scheduling part in Fig. 2. “Var x, y” show x and y coordinates of images, “Var l” shows a

number of rows of a cumulative sum vector, and “Var xr, yr” show x and y coordinates of kernels for computation of the

bilateral weight. RDom(min, range) shows variables for putting update passes inside loops in the range of min to min +

range − 1. select is similar to the ternary operator in C language. If the first argument is true, then return the second, else

return the third. d_gamma and c_gamma are smoothing parameters, and r is a kernels radius for computation of the

bilateral weight. An input image “Func I” is a grayscale image.

At first, we compute a bilateral weight in maskVals under the declaration of variables. Next, we generate histograms with

a horizontal axis as pixel data and vertical axis as a rate. And compute the total sum of histogram in hist_sum and the

cumulative sum of each histogram in hist_cumsum. Median values equal to pixel values R2 of cumulative sum over a

half of the total sum at first. Therefore, the weighted median filter is generated with R2 as median values. Finally, “Func

median” is computed in the range of width × height by implementing “median.realize(width, height)”. The function call

Halide compiler and run the part of Halide code. When we determine the specific scheduling of this filter, we will insert

the scheduling code before the function of “realize”. The effective scheduling of this filter will be shown in the next

section of experimental results.

Func bilateralWeight(Func& img)

{

// declaration of variables;

Func d_diff,c_diff,weight;

Var x,y,xr,yr;

float d_norm = -2 * d_gamma * d_gamma;

float c_norm = -2 * c_gamma * c_gamma;

// algorithm part

d_diff(xr, yr) = exp((xr * xr + yr * yr) / d_norm);

c_diff(xr, yr, x, y) = exp(pow(abs(img(x, y) - img(x+xr, y+yr)), 2) / c_norm);

weight(xr, yr, x, y) = d_diff(xr, yr) * c_diff(xr, yr, x, y);

// scheduling part

return weight;

}

Func weightedMedianFilter(Func& I)

{

// declaration of variables;

Func maskVals, hist, hist_sum, hist_cumsum, median;

Var x, y, l;

RDom R(-r, 2*r+1, -r, 2*r+1), R1(1, 255), R2(0, 255);

// algorithm part

// computing bilateral weight

maskVals(xr, yr, x, y) = bilateralWeight(I)(xr, yr, x, y);

// updating histogram

hist(l, x, y) = 0;

hist(I(x+R.x, y+R.y), x, y) += maskVals(R.x, R.y, x, y);

hist_sum(x, y) = sum(maskVals(R.x, R.y, x, y));

hist_cumsum(l, x, y) = hist(0, x, y);

hist_cumsum(R1, x, y) = hist(R1, x, y) + hist_cumsum(R1-1, x, y);

// getting median value

median(x, y) = -1;

median(x, y) = select(median(x, y) < 0, select(hist_cumsum(R2, x, y) > hist_sum(x, y) / 2, R2, -1), median(x, y));

// scheduling part

// compiling or running Halide code. Scheduling part are inserted here

median.realize(wid, hei);

return median;

}

Figure 2. Implementation of weighted median filter in Halide.

4. EXPERIMENTAL RESULTS

In our experiment, we show the effectiveness of the Halide for weighted median filtering. In the weighted median filter,

the input image was 768×512 grayscale image. The parameters of the filter were r=2, d_gamma=100 and c_gamma=150.

CPU was Intel Core i7-7800 3.50 GHz compiled with Visual Studio 2017.

Figure 3 is the result of the weighted median filter against the salt and pepper noise image. We needed an hour to obtain

the result of the weighted median filter without scheduling parts, which is shown in Fig. 2. Accordingly, for fast

computation, we added scheduling parts. In Fig. 4, “compute_root” indicates that associated functions are computed all

once ahead of time. “reorder” swaps the order of variables to have the given nesting order. “update” is used to optimize

updated Func. In case of adding Figure 4, the computational time of the code was improved to 31ms. Besides, the code

length of the algorithm part was 45 lines, and the code length of the scheduling part was 10 lines.

(a) Original image. (b) Add noise (c) Weighted median .

Figure 3. Result of weighted median filtering: (a) The input image, (b) Corrupted (a) by spike noise, (c) The weighted median

filtering result of (b).

Func bilateralWeight(Func& img)

{

// algorithm part

. . .

//scheduling part

distance_diff.compute_root().parallel(yr).vectorize(xr, 16);

}

Func weightedMedianFilter(Func& I)

{

// algorithm part

. . .

//scheduling part

hist.compute_at(medianVals, y).vectorize(x, 16).update(0).reorder(R.x, x, R.y, y).vectorize(x, 16);

hist_sum.compute_at(medianVals, y).vectorize(x, 16);

hist_cumsum.compute_at(medianVals, y).vectorize(l, 16).update(0).vectorize(x, 16);

medianVals.vectorize(x, 16).parallel(y).update(0).parallel(y).vectorize(x, 16);

}

Figure 4. Scheduling parts added to the code of Figure 2.

5. CONCLUSION

In this paper, we presented the weighted median filter with Halide code. By using Halide, we were able to easily write

the code. Only by adding Halide scheduling in the code, we improved computational time. In the effective scheduling

needed 10 lines, computational time of the code changed to 31 ms, we were able to efficiently parallelize the filter by

slightly modifying the code.

ACKNOWLEDGEMENT

This work was supported by KAKENHI JP17H01764, JP18K19813.

REFERENCES

[1] Tukey, J. W., "Non-linear (non-superposable) methods for smoothing data," Congr. Rec. 1974 EASCON 673

(1974).

[2] Lin, Y., Yang, R., Gabbouj, M., and Neuvo, Y., "Weighted median filters: a tutorial," IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing, 43, 3, 157-192 (1996).

[3] Nguyen, V. A., Min, D., and Do, M. N., "Efficient techniques for depth video compression using weighted

mode filtering," IEEE Transactions on Circuits and Systems for Video Technology, 23, 2, 189-202 (2012).

[4] Tomasi, C. and Manduchi, R., "Bilateral filtering for gray and color images," International Conference on

Computer Vision (ICCV) (1998).

[5] Porikli, F., "Constant time o(1) bilateral filtering," IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2008).

[6] Yang, Q., Tan, K. H., and Ahuja, N., "Real-time o(1) bilateral filtering," IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (2009).

[7] Chaudhury, K. N., Sage, D., and Unser, M., "Fast o(1) bilateral filtering using trigonometric range kernels,"

IEEE Transactions on Image Processing, 20, 12, 3376–3382 (2011).

[8] Sugimoto, K. and Kamata, S., "Compressive bilateral filtering," IEEE Transactions on Image Processing, 24, 11,

3357–3369 (2015).

[9] Sugimoto, K., Fukushima, N., and Kamata, S., "200 FPS constant-time bilateral filter using SVD and tiling

strategy," IEEE International on Image Processing (ICIP) (2019).

[10] Buades, A., Coll, B., and Morel, J.-M., "A non-local algorithm for image denoising," IEEE Computer Vision

and Pattern Recognition (CVPR) (2005).

[11] He, K., Sun, J., and Tang, X., "Guided image filtering," European Conference on Computer Vision (ECCV)

(2010).

[12] Fukushima, N., Sugimoto, K., and Kamata, S., "Guided image filtering with arbitrary window function," IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018).

[13] Gastal, E. S. L. and Oliveira, M. M., "Domain transform for edge-aware image and video processing," ACM

Transactions on Graphics, 30, 4, (2011).

[14] Yang, Q., "Recursive bilateral filtering," European Conference on Computer Vision (ECCV) (2012).

[15] Maeda, Y., Fukushima, N., and Matsuo, H., "Effective implementation of edge-preserving filtering on CPU

microarchitectures," Applied Sciences, 8, 10, 1985 (2018).

[16] Maeda, Y., Fukushima, N., and Matsuo, H., "Taxonomy of vectorization patterns of programming for FIR

image filters using kernel subsampling and new one," Applied Sciences, 8, 8, 1235 (2018).

[17] Fukushima, N., Tsubokawa, T., and Maeda, Y., "Vector addressing for non-sequential sampling in FIR image

filtering," IEEE International on Image Processing (ICIP) (2019).

[18] Fukushima, N., Maeda, Y., Kawasaki, Y., Nakamura, M., Tsumura, T., Sugimoto, K., and Kamata, S.,

"Efficient computational scheduling of box and Gaussian FIR filtering for CPU microarchitecture," Asia-Pacific

Signal and Information Processing Association Annual Summit and Conference (APSIPA) (2018).

[19] Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., and Durand, F., "Decoupling algorithms

from schedules for easy optimization of image processing pipelines," ACM Transactions on Graphics, 31, 4, 32

(2012).

[20] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Amarasinghe, S., "Halide: a language and

compiler for optimizing parallelism, locality, and recomputation in image processing pipelines," ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI) (2013).

[21] Mullapudi, R. T., Adams, A., Sharlet, D., Ragan-Kelley, J., and Fatahalian, K., "Automatically scheduling

Halide image processing pipelines," ACM Transactions on Graphics, 35, 4, 83 (2016).

[22] Li, T.-M., Gharbi, M., Adams, A., Durand, F., and Ragan-Kelley, J., "Differentiable programming for image

processing and deep learning in Halide," ACM Transactions on Graphics, 37, 4 (2018).

[23] Chaurasia, G., Ragan-Kelly, J., Paris, S., Drettakis, G., and Durand, F., "Compiling high performance recursive

filters," High-Performance Graphics (HPG) (2015)

[24] Ishikawa, A., Fukushima, N., Maruoka, A., and Iizuka, T., "Halide and GENESIS for generating domain-

specific architecture of guided image filtering," IEEE International Symposium on Circuits and Systems

(ISCAS) (2019).

