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ABSTRACT
Smoothing filters have been used for pre/post-processing
in various fields, such as computer vision and computer
graphics. Bilateral filtering (BF) has a typical edge-
preserving filter for such applications. The main issue of
BF is its computational cost. Constant-time BF (O(1)
BF) is one of the solutions to this problem, and compres-
sive BF is a kind of O(1) BF. Compressive BF has, how-
ever, a restriction that we can only use Gaussian kernel
as a range kernel until now. In this paper, we propose
the method to extend compressive BF to handle arbi-
trary range kernels. Experimental results show that our
extension handles arbitrary range kernels, and becomes
the number of convolutions into half.

Index Terms— Constant-time bilateral filter, O(1)
bilateral filter, compressive bilateral filter, arbitrary
range kernel, Fourier series expansion

1. INTRODUCTION

Edge-preserving smoothing is the processing that smooths
images while maintaining contours in it. Bilateral filter-
ing (BF) [1] is one of the famous edge-preserving filters.
The main drawback of BF is computational cost. Even
if we heavily optimize codes of BF [2, 3], BF has more
processing time than linear filters, such as Gaussian fil-
tering (GF), because BF has spatially variant kernels.
By contrast, GF is spatially invariant. Constant-time
BF (O(1) BF) is one of the acceleration methods, and
there are various approaches. O(1) BF decomposes BF
into multiple GFs, and then we perform the GFs by
using constant-time GF [4, 5, 6, 7, 8].

Early works of approximated BF [9, 10, 11, 12, 13,
14, 15] decompose BF by hat functions and then lin-
early interpolate results. The GF is not constant-time
GF; thus, approximated BF is not O(1). The follow-
ing works [16, 17, 18, 19] extend BF to have constant-
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time property by using linear interpolation. Next works
use raised cosine decomposition [20, 21, 22, 23], cosine
transformation [24, 25], and matrix decomposition [26]
to improve the approximation accuracy. Furthermore,
convolution sharing techniques [22, 27, 28, 29, 30] re-
duces the number of convolutions into half. Taylor de-
composition [22, 27], Chebyshev decomposition [28], fast
compressive BF [29], and singular value decomposition
(SVD) [30] can reduce the number of convolutions. Now,
the SVD approach is state-of-the-arts.

BF has spatial and range kernels. Both kernels are
Gaussian distribution. However, more flexibility kernel
shape is useful for various signal processing applications,
such as audio processing, biological signal processing,
and signal processing for various IoT sensors. In this con-
text, the linear interpolation approach [19] and the ma-
trix factorization approach [26, 30] support this property.
The SVD approach, especially, can save the number of
convolutions. However, the SVD has difficulty in its ini-
tialization cost. Solving SVD takes high computational
cost; thus, the method is not suitable for interactive pro-
cessing, such as photo editing. The method is suitable
for fixed-parameter cases, such as video processing.

Compressive bilateral filtering reaches the near per-
formance of SVD, and its initialization cost is lower than
SVD. The conventional form of compressive BF [24, 25]
with slight modification, we can represent arbitrary
range kernels by using cosine transform. However, the
method is cost-consuming because the paper focuses
only on Gaussian distribution. Also, the functionality
of the arbitrary range kernel is not justified in the pa-
per. Moreover, the acceleration approach of compressive
BF [29], named fast compressive BF, can only accelerate
the Gaussian range kernel.

Therefore, we extend compressive bilateral filtering
to have arbitrary range kernels and also accelerate the
initialization. The contributions of this paper are:

• Extending fast compressive bilateral filtering to
have arbitrary range kernel.

• Accelerating the period optimization, which im-
proves the approximation accuracy.



2. RELATED WORKS
2.1. Formulation of O(1) BF

The kernel of BF consists of two weights, such as a weight
of spatial domain S and a weight of range domain R.
Consider D-dimensional grayscale image with spatial do-
main S ⊂ ZD and dynamic range R = {0, . . . , R − 1} ⊂
Z, (D = 2, R = 256 in general). A pixel position is de-
noted by p ∈ S and the intensity at p is expressed by
Ip ∈ R. BF is defined as follows;

Îp =
∑

q∈S ws(p, q)wr(Ip, Iq)Iq∑
q∈S ws(p, q)wr(Ip, Iq) , (1)

where Îp are the output intensity at p. Ip and Iq are
the intensity at target and reference pixels, respectively.
ws and wr are spatial and range weights, respectively.
The weights are defined by ws(p, q) = exp(−‖q−p‖2

2
2σ2
s

)
and wr(a, b) = exp(− (b−a)2

2σ2
r

), where σs and σr are pa-
rameters of spatial and range scales, respectively.

O(1) BF can be formulated by substituting wr(a, b) ≈∑K−1
k=0 φk(a)ψk(b) into formula (1):

Îp≈
∑K−1
k=0 φk(Ip)

∑
q∈S ws(p, q){ψk(Iq)Iq}∑K−1

k=0 φk(Ip)
∑

q∈S ws(p, q){ψk(Iq)}
, (2)

where K is the approximating order.
∑

q∈S ws(p, q){·}
can be considered as a spatial convolution of an image.
The functions of φ and ψ are different for each approxi-
mation method, e.g., linear, compressive, and SVD.

2.2. Compressive Bilateral Filtering [24]

Gaussian kernel is an even function; thus, we can rep-
resent it as sum of cosine terms by using Fourier series
expansion:
wr(x) ≈ ŵr(x,K, T ) = α0 + 2

K∑
k=1

αk cos
(

2π
T
kx

)
, (3)

αk = 1
T

∫ T
2

−T2
f(x) cos(wkx)dx (4)

The closed-form approximation holds αk ≈ 2
T exp− 1

2 ( 2π
T kσ)2

for Gaussian kernel [24]. By using the trigonometric ad-
dition formulas, BF becomes as follows;

Îp =
α0Ĩp+2

∑K
k=1αk

(
cos(wkIp)C̃ ′p+sin(wkIp)S̃′p

)
α0+2

∑K
k=1αk

(
cos(wkIp)C̃p+sin(wkIp)S̃p

) , (5)

C̃p =
∑

q∈S ws(p, q) cos(wkIq), S̃p =
∑

q∈S ws(p, q) sin(wkIq),
C̃′p =

∑
q∈S ws(p, q) cos(wkIq)Iq , S̃′p =

∑
q∈S ws(p, q) sin(wkIq)Iq,

where wk = 2π
T k, and Ĩp is result of GF for Ip. In this

case, φ and ψ are cos and sin functions. The period of
T is optimized by minimizing the following closed-form
function:
E(K,T ) = erfc

(πσ
T (2K + 1)

)
+ erfc

(
T−R
σ

)
. (6)

The function is differential; thus, we can obtain Topt =
arg min

T
E(K,T ) by using Newton-Raphson method.

The number of convolutions is 4K + 1.

2.3. Fast Compressive Bilateral Filtering [29]

Fast compressive BF shares the convolution results for
each numerator and denominator, such as S̃p and S̃′p,
C̃p and C̃ ′p. For this sharing, we change the filtering
form (1) by subtracting Ip:

Îp−Ip =
∑

q∈S ws(p, q)wr(Ip, Iq)(Iq − Ip)∑
q∈S ws(p, q)wr(Ip, Iq) . (7)

Plugin the differential of Gaussian distribution function
exp′( (a−b)2

−2σ2 ) = − exp( (a−b)2

−2σ2 ) (a−b)
σ2 into this equation (7),

fast compressive BF is defined as follows:

Îp = Ip −
∑

q∈S ws(p, q)w′r(Ip, Iq)∑
q∈S ws(p, q)wr(Ip, Iq) . (8)

w′r can be computed from differential of Eq. (3). There-
fore, the filtering is defined by:

Îp =Ip−
2σ2∑K

k=1αk

(
sin(wkIp)C̃p−cos(wkIp)S̃p

)
α0+2

∑K

k=1αk

(
cos(wkIp)C̃p+sin(wkIp)S̃p

) . (9)

This form has the same convolution results, i.e., C̃p and
S̃p, in the numerator and denominator terms. Therefore,
the number of convolutions is half (2K).

3. PROPOSED METHOD
3.1. Extension for Arbitrary Range Kernel

The compressive BF [24] and the fast method [29] are
specialized for Gaussian distribution. In this section, we
extend the works to have arbitrary range kernels.

For compressive BF, it is easy to extend to arbitrary
range kernels. Computing (3) and (4), the form supports
arbitrary range kernels, because Fourier series expansion
is adaptable to piece-wise smooth arbitrary functions,
and it does not assume that the function is differen-
tiable. To solve (4), we use numerical integration with
trapezoidal rule. For the optimizing period, the equation
cannot support arbitrary range kernel. This problem is
solved in the next subsection.

Next, we consider fast compressive BF. First, we start
the form (7). Obviously, we can solve denominator terms
in the same way as compressive BF. Note that we can-
not use the closed-form solution, because we do not limit
the range kernel as Gaussian distribution. For the de-
nominator, the term wr(Ip, Iq)(Iq − Ip) in (7) is an odd
function because wr is an even function and Iq−Ip is an
odd function. Therefore, we approximate the function of
f(x)x by sum of sin terms by Fourier series expansion.
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Fig. 1. Optimizing period.
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Fig. 2. Shape of each kernel.

wr(x)x ≈ 2
K∑
k=1

βk sin
(

2π
T
kx

)
, (10)

βk = 1
T

∫ T
2

−T2
f(x)x sin(wkx)dx (11)

To solve (11), we also use numerical integration. By
using the trigonometric addition formulas, the approxi-
mated function of f(x)x in the range kernel are decom-
posed into two variables:

wr(a, b)(b− a) ≈ 2
K∑
k=1

βk sin(ωk(b− a)) (12)

= 2
K∑
k=1

βk(sin(ωka) cos(ωkb)− cos(ωka) sin(ωkb)), (13)

After separation, the form of fast compressive BF for
arbitrary range kernel is as follows;

Îp =Ip−
2
∑K

k=1βk

(
sin(wkIp)C̃p−cos(wkIp)S̃p

)
α0+2

∑K

k=1αk

(
cos(wkIp)C̃p+sin(wkIp)S̃p

) . (14)

The form can share the convolution terms in the numer-
ator and denominator terms, such as C̃p and S̃p. The
number of convolutions is 2K.

3.2. Optimization Method of Period T

The period of T is generally 2. However, we usually use
a monotonically decreasing function from 0 to the tail
for the range kernel. In this case, we can ignore the tail
distribution. The tails discarding is realized by minimiz-
ing T . The compressive BF [24] optimizes the periods
to have more performance. To optimize T , we cannot
use the closed-form solution of Eq. (6), because we han-
dle unknown arbitrary functions. The naive kernel error
function between ideal kernel of wr and approximated
kernel of ŵr are defined as follows;

E(K,T )=
∑
a∈R

∑
b∈R (wr(a,b)−ŵr(a, b,K, T ))2

|R| × |R|
, (15)
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Fig. 3. Initialize time of each method.
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Fig. 4. Total processing time for each method.

where |R| is the number of elements in intensity, and
usually 256. This error function has a double-loop. Also,
the function is not guaranteed by a differentiable func-
tion. Therefore, the direct solution to obtain Topt =
arg min

T
E(K,T ) is linear search algorithm; however, the

processing is cost-consuming. Figure 1 shows E(K,T )
and E(K,T )−E(K,T +ε), where ε is a very small value,
for various kernels used in the experimental results sec-
tion. The figure shows that the functions are not appli-
cable for Newton’s method.

Here, ŵr(a, b,K, T ) is a periodic function; thus, the
function has shiftability [20]. In this condition, the error
function (15) becomes a single-loop.

E(K,T )=
∑
a∈R(wr(v, a)− ŵr(v, a,K, T ))2

|R|
, (16)

where v ∈ R is a constant value, i.e., any value from 0 to
255 is possible. The transformation minimizes the search
cost.

Further, we utilize the golden section search algo-
rithm to solve the problem more efficiently. We assume
that the function wr is piece-wise smooth for the Fourier
series expansion. In this case, the golden section search
algorithm works well.
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Fig. 5. Processing time of calculating the period. Order
K is from 1 to 50.
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Fig. 6. PSNR vs. the number of convolutions for each method.

(a) Proposed
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Fig. 7. Filtering results of hat kernel for each method.
Differential parts are boosted by 1.0 × 104. The numer
of convolutions is 100.

4. EXPERIMENTAL RESULTS

We evaluated compressive BF with arbitrary range ker-
nels, such as Gaussian, exponential function of Lp norm1,
and hat kernels. The definitions are Gauss(a − b) =
exp(− 1

2

(
a−b
σr

)2
), hat(a − b) = max(0, 1 − |a−b|

σr
), and

explp(x) = exp(− 1
p

(
|a−b|
σr

)p
). Figure 2 shows the ker-

nel shapes. For expLp , p = 1 is Laplacian distribution,
p = 2 is Gaussian distribution, and p = ∞ is box ker-
nel. In this experiment, we use p = 6. The code was
written in C++, parallelized by OpenMP, and vector-
ization by AVX. CPU was Core i5-4690 3.50GHz. For
the entire experiment, we set σr = 40, σs = 5. We used
the standard test grayscale images (512×512), such as
Lenna, Cameraman, Sailboat on lake, Couple, Peppers,
Male, Stream and bridge, and Woman.

Figure 5 shows the processing time to optimize the
period of T . We compared three methods, such as linear
search with a double-loop (linear, 2loop method), golden
section search with a single-loop (proposed method),
and closed-form solution of Gaussian distribution (gauss
method). Note that we evaluated only the Gaussian ker-
nel for the closed-form solution. The proposed searching
accelerates the optimization processing, and the differ-
ence between the closed-form is less than 0.001ms.

The following experiments, we compared the pro-
posed method with linear [19] and SVD [30]. All results
are averaged for each test image. Figure 3 shows the ini-

1Lp = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p

tializing time of generating the range kernels. The hori-
zontal axis is the number of convolutions. For linear and
the proposed method, the number of convolutions is 2K.
For SVD, that is K. Linear is the fastest and is within 1
ms. The processing time of the proposed method within
5.5 ms at worst. By contrast, SVD needs about 400ms
for initialization; thus, it is not suitable for interactive
processing. Figure 4 shows the time from start to fin-
ish all processing, including convolution operations. The
processing time of the proposed method and the linear
method is almost the same. The proposed method is five
times faster than the SVD method. Note that when we
process videos with the fixed-parameter, we can ignore
the initialization cost.

Figure 6 shows peak signal-to-noise ratio (PSNR) be-
tween approximated results and naive filtering results,
and Figure 7 shows the result images; the left half is the
output image, and the other half is the difference image
between approximated results and naive filtering results.
Except for the Gaussian kernel, the proposed method has
higher accuracy than the other method. For the Gaus-
sian kernel, SVD has better performance. Note that we
take within 1 ms for one convolution. However, the SVD
requires offset time to generate range kernel; therefore,
the proposed method tends to have better performance
even when we use the Gaussian kernel in interactive fil-
tering.

5. CONCLUSION

In this paper, we extended compressive BF to have any
range kernel. Moreover, we also extended fast compres-
sive BF to reduce the number of convolutions into half.
Furthermore, we accelerate the optimization process of
the period for trigonometric functions by using shifta-
bility in error function and the golden selection search
algorithm.

Experimental results show that we can represent ar-
bitrary range kernels, and the proposed method supe-
rior to the state-of-the-art of the SVD method. Also,
the accelerated optimization method minimizes the ini-
tialization cost method, and the cost reaches the near
computational time of the simplest approach of linear
interpolation.
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