
An Efficient Description with Halide for
IIR Gaussian Filter

Hiroyasu Takagi and Norishige Fukushima
Nagoya Institute of Technology, Japan

Abstract—Recursive Gaussian filter is one of the constant-time
algorithms fir Gaussian filtering to reduce the computational
order. The recursive property makes programs hard for opti-
mization because all resulting pixels in a recursive filter depend
on all input pixels. Halide is a domain-specific language for image
processing and can powerfully accelerate image processing with a
concise description. However, it is also tricky to describe concise
scheduling for recursive filters. As a solution to this problem,
RecFilter has been developed as a domain-specific language for
handling recursive filter, which internally generates the Halide
code. The limitation of RecFilter is in approximation accuracy.
Here, we extend RecFilter to suit the methods commonly used in
recursive Gaussian filter to solve this problem. Also, we improve
computational performance by changing computational schedul-
ing. Experimental results showed that the proposed generator
produces more computationally efficient codes, and the resulting
images have higher approximation accuracy.

I. INTRODUCTION

Approaching the end of Moore’s law, computing archi-
tecture of chips increases complexity. In the complex hard-
ware, it is hard to maximize the performance of codes.
Domain-specific compilers/languages are one of the solutions.
Halide [1] is a domain-specific language (DSL) for image pro-
cessing, and continuously developed [2], [3], [4]. In the Halide,
we can separate codes into an algorithm part and a scheduling
part to help code optimization. We can write how to work
image processing in the algorithm part and how to compute
it in the scheduling part. Changing only the scheduling part,
we can optimize the code for the specific hardware, such as
CPU (x86, ARM, MIPS, Hexagon, PowerPC, and Xeon Phi)
and GPU (CUDA, OpenCL, and OpenGL).

Here, we focus on Gaussian filtering in an image processing
task in this paper. Gaussian filtering is a smoothing filter used
in various signal processing and image processing tasks. For
example, Canny edge detection [5], SIFT [6], saliency map
computation [7], and image quality metrics of SSIM [8], [9].
Also, edge-preserving filtering, e.g., as bilateral filtering [10],
guided image filtering [11] and local Laplacian filter [12], uti-
lizes Gaussian filtering in internal processing for acceleration,
such as bilateral filtering [13], [14], [15], [16] guided image
filtering [17], and local Laplacian filtering [18].

The computational order of Gaussian filtering depends on
the convolution’s kernel size, and the kernel size is propor-
tional to σ, which is the standard deviation of the Gaussian
distribution. A solution to this problem is a recursive Gaussian
filter, which is one of the constant-time algorithms whose

This work was supported by JSPS KAKENHI 17H01764, 18K19813.

computational order is independent of σ. The approximation
represents Gaussian filtering by recursive filtering. The repre-
sentative methods of recursive Gaussian filters are Deriche [19]
and Vilet-Young-Verbeek(VYV) [20], [21] forms.

The Halide has difficulty to describe concise scheduling
of the recursive filter. Halide’s powerful scheduling is tiling;
however, the scheduling is prevented by the recursive property
that all pixels have a dependency on the other all pixels.

RecFilter [22] has been developed as a DSL for recursive
filters to solve this problem. RecFilter wraps Halide and
generates Halide code for a recursive filter with a concise
description. The limitation of RecFilter is accuracy. The DSL
is developed for accelerating recursive filtering, not for gen-
erating high accuracy filtering results. The resulting image is
not approximated for Gaussian filtering.

Our previous work [23] generates recursive filtering codes
with an additional tiling function written in C++ with OpenMP
and Halide. This implementation can support tiling for any
recursive filtering, but the Halide’s main advantage, which
is the separability of algorithm and scheduling parts, has
disappeared.

In this paper, we propose a new DSL description for
recursive filtering, which outputs Halide codes. The DSL
resolves the previous works’ limitations, such as accuracy in
results and modularity in codes. The contributions of this paper
are as follows;

• We improve the accuracy of the previous work of Rec-
Filter.

• We extend RecFilter to have representative forms of IIR
filtering, such as Deriche and VYV, which have higher
accuracy than RecFilter.

• We accelerate the implementation of Deriche and VYV
forms by adjusting computational scheduling, which has
less dependency than the previous work.

II. RELATED WORKS

A. Gaussian filter

A Gaussian filter is a fundamental smoothing filter that
weights according to a normal (Gaussian) distribution. The
Gaussian kernel has a separability so that a multi-dimensional
Gaussian filter can be represented as a product of one-
dimensional Gaussian filters. Hence, we will now describe the
one-dimensional Gaussian filter.

Equation (1) represents the one-dimensional Gaussian ker-
nel;

gn = τ−1 exp(− n2

2σ2
), τ =

R∑
n=−R

exp(− n2

2σ2
), (1)

where σ2 represents the variance and R is radius. Typically,
R = d3σe. Since the computational order of the kernel
convolution is O(R), the computational complexity of the
Gaussian filter increases in proportion to the σ.

In accelerating Gaussian filtering, there are two types of
filters, such as finite impulse response (FIR) filtering and
infinite impulse response (IIR) filtering [24]. FIR filters utilize
stack of neighboring averaged result [25], [26], [27], [28], [29],
which is accelerated by recursive computing. Our previous
work [30] accelerated the FIR Gaussian filtering with hard
code.

This paper focuses on accelerating IIR Gaussian filter-
ing [19], [21]. IIR filtering supports infinite kernel size. The
property is essential for some specific applications, such as
interpolating non-uniformly sampled images [31], [32] and
hole filling of depth maps by filtering. In both conditions,
requiring kernel size is unknown, and it becomes the total
image size at worst.

B. Recursive IIR Gaussian Filter

A recursive filter feeds back past output, and is generally
represented by the difference equation;

yn =

N−1∑
i=0

bixn−i −
M∑
j=1

ajyn−j , (2)

where xn is input signal, yn is output signal, aj is feed-back
coefficient, bi is feed-forward coefficient, N and M are the
order of the filter.

A recursive Gaussian filter approximates the Gaussian filter
by setting the filter’s coefficients appropriately. The main
approximation methods are Deriche [19] and Vilet-Young-
Verbeek (VYV) [20], [21] forms.

The output of the Deriche form is the sum of filtering results
in a causal and anti-causal scan. These scans are independent.
Also, we need to calculate the initial values for each scan. The
initial values are generally computed by directly convoluting
extended image edge with the impulse response, which is cal-
culated non-recursive. The image edge extension is generally
carried out in a mirroring, and Equation (3) shows the mirror-
extended signal f̃n from the input signal fn:

f̃n =

fn (n = 0, ..., N − 1)

f−1−n (n < 0)

f2N−1−n (n ≥ N).

(3)

Equation (4) shows the impulse response of the recursive filter:

hn =

N−1∑
i=0

biδn−i −
M∑
j=1

ajhn−j . (4)

Algorithm 1 Algorithm for calculating initial values by con-
volution with impulse response.

Input: mirror-enhanced input signal f̃ , filter coefficients ai
and bi,accuracy tol

Output: um = h ∗ f̃ , (m = 0, ...,M − 1)
1: compute h0, ..., hM with formula 4
2: s←

∑∞
n=0 |hn|

3: um ←
∑M

n=−m hn+mf̃−n, (m = 0, ...,M − 1)
4: while n=0,1,2,... do
5: um ← um + hn+mf̃−n, (m = 0, ...,M − 1)
6: s← s− |hn|
7: if s ≤ tol then
8: break
9: end if

10: hn+M ← bn+M −
∑M

j=1 ajhn+M−1−j
11: end while

Func blur 3x3 (Buf fer<u in t8 t> src)
{

Func clamped , b lur x , b lu r y ;
Var x , y , x i , y i , xo , yo ;

/ / a lgo r i t hm par t
clamped = BoundaryCondit ions : : repeat edge (src) ;
b lu r x (x , y)= (src (x−1, y)

+(src (x , y)+ (src (x+1 , y)) / 3 ;
b lu r y (x , y)= (b lu r x (x−1,y)

+b lu r x (x , y)+ b lu r x (x+1 ,y)) / 3 ;

/ / schedul ing pa r t
b lu r y . t i l e (x , y , xo , yo x i , y i , 32 , 32)

. v e c t o r i z e (x i , 8) . p a r a l l e l (yo) ;
b lu r x . compute at (b lur y , xo) . v e c t o r i z e (x i , 8) ;

r e t u r n b lu r y ;
}

Fig. 1. Halide code of 3× 3 box filtering for CPU backend.

Algorithm 1 shows the flow of calculating initial values in the
Deriche form.

In the VYV form, the filtering output is obtained by
convoluting the result of a causal scan in an anti-causal scan. In
this method, the initial values of the causal scan are computed
by convolution with impulse response as well as in the Deriche
form. In the anti-causal scan, it is calculated by weighting the
results of the causal scan [24]. In general, the Deriche form
is more computationally expensive than the VYV format, but
it is more stable than VYV.

C. Halide

The Halide [1] is a major DSL for image processing. The
language is a pure functional language and is embedded in
C++. The Halide can be described as a separate description of
Algorithm parts and Scheduling parts. Algorithm parts show
the essence of processing and are a hardware-independent
description. Scheduling parts reveal the computational order
and computational method. The former example is scanning-
loop order, and the later examples are vectorization and
parallelization.

RecFi l terDim x (” x ” , image width) , y (” y ” , image height) ;
R e c F i l t e r F (” Gaussian ”) ;
F . set clamped image border () ;

/ / i n i t i a l i z e the I IR p i p e l i n e
F(x , y) = image (x , y) ;

/ / add the f i l t e r s : causal and an t i−causal
F . a d d f i l t e r (+x , gaussian weights (sigma , order)) ;
F . a d d f i l t e r (−x , gaussian weights (sigma , order)) ;
F . a d d f i l t e r (+y , gaussian weights (sigma , order)) ;
F . a d d f i l t e r (−y , gaussian weights (sigma , order)) ;

/ / t i l e the f i l t e r
F . s p l i t (x , t i l e w i d t h) ;
F . s p l i t (y , t i l e h e i g h t) ;

/ / schedule the f i l t e r
F . s e t v e c t o r i z a t i o n w i d t h (vec to r w id th)
F . cpu auto schedule () ;

/ / J IT compile and run
Buf fer<f l o a t> out (F . r e a l i z e ()) ;

Fig. 2. RecFilter code of recursive Gaussian filter for CPU backend.

Figure 1 shows the Halide code of 3 × 3 box filtering for
CPU backend as an example. Func represents a pipeline stage.
It is a pure function that defines what value each pixel should
have. Var is the name to use as variables in the definition of a
Func. “Buffer src” represents an input image, and its bound-
aries are extended by a method in the BoundaryConditions
namespace. “Var x,y” show x and y coordinates of images
and functions. In the algorithm parts, we horizontally average
the clamped image clamped, and then vertically mean the
averaged image. In scheduling parts, computational scheduling
is defined in each func by calling various class methods, e.g.,
tile, vectorize, parallel, and compute at. tile split the image
into 32×32 tiles by inner and outer variables. vectorize orders
vectorized computing with SIMD units, e.g., SSE, AVX, and
NEON, and this vectorizes pixels along the xi loop. parallel
shows multi-thread computing with multi-core/thread CPU,
and the scheduling parallelize along the yo loop. compute at
indicates how to memorize computed results, and we compute
and memorize “Func blur x” on xo loop of “Func blur y”
under the schedule. In the default schedule, no computation is
memorized, i.e., all functions are inlined.

The Halide is utilized for more complex image filtering,
such as guided image filtering [33] and weighted median
filtering [34].

D. RecFilter

The RecFilter [22] is a DSL for recursive filters with extend-
ing the Halide. Figure 2 shows the RecFilter code of recursive
Gaussian filter for CPU backend. RecFilter is the entity of
the recursive filter and RecFilterDim is a dimensional variable
used by RecFilter. The operator add filter adds one filter at a
time in a particular dimension. It specifies the filter dimension
in the first argument, the causal/anti-causal direction judging
by whether a dimension is positive or negative. The filter
coefficients are given in a linear list of the second argument,

step2
inter-tile scan

+ + +

Tiled scan

step3
filtering scan

step1
intra-tile scan

Fig. 3. Filtering method of RecFilter.

whose first element is feed-forward, and remains are feed-
back coefficients. For tiling, the filter uses the operator split.
The argument of this gives the dimension to be split and the
width of the tiles. Operator set vectorization width specifies
the width of vectorizing, and operator cpu auto schedule
automatically schedules the processing for CPU.

RecFilter accelerates processing by tiling, vectorizing and
parallelizing recursive filters. It is necessary to calculate the
initial value for each tile for tiling, and this is implemented
uniquely in RecFilter. Figure 3 shows a one-directional filter-
ing method of RecFilter. In step 1, the initial value of filtering
is padded to zero and then filter on each tile, which is called an
intra-tile scan. In step2, first, the results obtained for each tile
in step 1 are multiplied by the weights. The weighted results
are then added to the adjacent results in the scan direction.
This process is called an inter-tile scan. In step 3, the results
obtained in step 2 are used as the initial values for filtering,
and the final filtering results are obtained. In multi-direction
filtering, this filtering will be repeated for multiple dimensions
and directions.

RecFilter’s automatic scheduler specifies compute at for
intra-tile scans and compute root for inter-tile scans as cal-
culation timing. This schedule is because the intra-tile scan
is closed within each tile, and compute at improves cache
efficiency by sequentially computing each tile. However, since
the inter-tile scans are dependent on neighboring tiles, it is
necessary to synchronize them, so compute root is specified.

III. PROPOSED METHOD WITH EXPERIMENTAL
VERIFICATION

In this paper, we mention the problem that RecFilter has
and propose a solution to them. We also extend RecFilter to
support methods commonly used methods, such as the Deriche
and VYV forms.

A. Solution for limitation in RecFilter

The implementation of RecFilter is similar to the VYV form
of the recursive Gaussian filter, where the output of the causal
scan is re-filtered in an anti-causal scan to obtain the final
output. The filter coefficients are the same as in the VYV
form. Note that RecFilter has its way of calculating the filter’s
initial value, as mentioned in section II-D. This method, in
particular, does not retain approximate accuracy when the filter
is bi-direction. This limitation is because the intra-scans of
RecFilter are not separated in the causal and anti-causal scan,

Original bi-direction filtering

Improved bi-direction filtering

+ + +

step1
intra-tile scan

step2
inter-tile scan

step3
filtering scan

Large effect of zero padding

step1
intra-tile scan

+ + +
step2

inter-tile scan

step3
filtering scan

Without zero padding
in anti-causal scan

Fig. 4. Improvement of intra-scan.

Table I
SPECIFICATIONS OF COMPUTER.

OS Windows 10 Enterprise
CPU Intel(R) Core(TM) i5-4690 @ 3.50GHz
RAM 8GB, DDR3

BUILD Visual Studio 2017

but rather are grouped. Hence, the effect of zero paddings
associated with intra-scan in the anti-causal direction is large
affected.

We improved this problem by extending RecFilter to not
perform zero paddings for the anti-causal direction in intra-
scan. Figure 4 illustrates the bi-direction filtering before and
after the improvement. In the figure, the shaded areas are
padded to zero, and the darker areas at the edge of tiles are
used to calculate the initial values. As shown in the figure,
the original intra-scan has zero paddings on the areas used
to calculate the initial values (the left-side of tiles in the
anti-causal scan). This process is why the original RecFilter’s
approximation accuracy of the initial value is low.

We implemented a recursive Gaussian filter with RecFilter
before and after the improvement. Both codes are the same as
in Fig. 2. Their outputs with the input image as 512×512 gray
image of each are shown in Fig. 5. The specifications of the
computer used are also shown in Table I. And, the parameters
set in RecFilter are shown in the Table II. Computational
time, when scheduled with cpu auto schedule of RecFilter,
is shown in Fig. 6a. PSNR for outputs of each RecFilter,
measured as the output of the FIR Gaussian filter for a
correct image, is shown in Fig. 6b. VYV AVX, used for
comparison, is a recursive Gaussian Filter in VYV format that
was manually optimized for CPU. From the result of PSNR,
the improved RecFilter had high approximation accuracy in a
small range of σ, but it decreases significantly with increasing
of σ. Furthermore, the computational time does not change
significantly either before or after the improvement of Rec-
Filter, and both take several times longer than VYV AVX.
RecFilter requires one extra filtering step for calculating the
initial values, and the cost of this process had a considerable
effect on the calculation time. We also consider that it is

Table II
PARAMETERS SET IN RECFITER.

order 3
split width 32
vectorize width(x-axis) 8
vectorize width(y-axis) 32

(a) before:σ=3.0 (b) before:σ=15.0

(c) after:σ=3.0 (d) after:σ=15.0

Fig. 5. Outputs of RecFilter before and after improvement.

not easy to achieve high approximation accuracy with this
calculation method for initial values.

B. Extension of RecFilter Based on VYV Form

The main reason for the low approximation accuracy of
RecFilter is in the computing method of initial values for
each tile. In this section, we extended RecFilter by improving
the computation method for initial values. Also, we adjust the
suitable scheduling for the modification. We call this extended
RecFilter VYV-RecFilter.

RecFilter originally used filter coefficients based on VYV
format; there are two changes in VYV-RecFilter; the way
of calculating initial-values and the calculation timing of
function.

First, VYV-RecFilter calculates initial values by convolution
with impulse response in a causal scan, and then weighting
the results of the causal scan in an anti-causal scan [35].
In calculating initial values by convolution with the impulse
response, the image edge typically should be extended by
mirroring to compensate outside signals. In an inner tile, we
can use outside signals of the tile from an input image.

Second, we changed the calculation timing of all functions
as compute at to improve the cache efficiency. In VYV-
RecFilter, the processing is closed within a tile, while the

2

4

6

8

10

12

14

16

3 13 23 33 43

ti
m

e
[m

s
]

σ

RecFilter

improved RecFilter

VYV_AVX

(a) Computational time

2

12

22

32

42

52

3 13 23 33 43

P
N

S
R

[d
B

]

σ

RecFilter

improved RecFilter

VYV_AVX

(b) PSNR

Fig. 6. Execution result of RecFilter before and after improvement.

RecFi l terDim x (” x ” , image width) , y (” y ” , image height) ;
R e c F i l t e r F (” Gaussian ”) ;
F . set clamped image border () ;

/ / i n i t i a l i z e the I IR p i p e l i n e
F(x , y) = image (x , y) ;

/ / add the f i l t e r s : causal and an t i−causal
F . a d d f i l t e r (+x , gaussian weights (sigma , order)) ;
F . a d d f i l t e r (−x , gaussian weights (sigma , order)) ;
F . a d d f i l t e r (+y , gaussian weights (sigma , order)) ;
F . a d d f i l t e r (−y , gaussian weights (sigma , order)) ;

/ / spec i f y f i l t e r i n g a lgo r i t hm
F . a lgo r i t hm (VYV) ;
F . s e t t o l (t o l) ;

/ / t i l e the f i l t e r
F . s p l i t (x , t i l e w i d t h) ;
F . s p l i t (y , t i l e h e i g h t) ;

/ / schedule the f i l t e r
F . s e t v e c t o r i z a t i o n w i d t h (vec to r w id th)
F . cpu auto schedule () ;

/ / J IT compile and run
Buf fer<f l o a t> out (F . r e a l i z e ()) ;

Fig. 7. VYV-RecFilter code of recursive Gaussian filter for CPU backend.

original Recfilter has a dependency for each tile.
Here, the set parameters are changed to 256 for split

width, and 64 for y-axis vectorize width, and otherwise same
as before (Table II). Figure 7 shows VYV-RecFilter code
of recursive Gaussian filter for CPU backend. We allowed
changing the filtering algorithm using the operator algorithm.
operator set tol also specifies the tolerance of convolution with
the impulse response. Outputs of VYV-RecFilter are shown in
Fig. 8, and PSNR and computational time are shown in Fig. 9.

The results showed that VYV-RecFilter could significantly
accelerate the processing time from RecFilter and improve ap-
proximation accuracy. Comparing with VYV AVX, which is
hard C++ code for VYV filter optimized with AVX, however,
VYV-RecFilter had lower performance than VYV AVX.

From the output results (Fig. 8), it can be observed that the
boundaries of tiles become noticeable as the increase of σ.
This phenomenon is because initial values in the anti-causal
scan are calculated only from the result of a causal scan; thus,
weakening the dependence of tile boundaries on each other.

(a) σ=3.0 (b) σ=15.0

Fig. 8. Outputs of VYV-RecFilter.

0

2

4

6

8

10

12

14

3 13 23 33 43

ti
m

e
[m

s
]

σ

improved RecFilter

VYV-RecFilter

VYV_AVX

(a) Computational time

2

12

22

32

42

52

3 13 23 33 43

P
N

S
R

[d
B

]

σ

improved RecFilter

VYV-RecFilter

VYV_AVX

(b) PSNR

Fig. 9. Execution result of VYV-RecFilter.

C. VYV-RecFilter with Redundancy Calculation

In VYV-RecFilter, the approximation accuracy is degraded
because the tile boundaries were not smoothed out due to the
calculation method of the initial values in the anti-causal scan.
We now provide redundancy in the causal scan to compute
the anti-causal scan’s initial values at a position far from the
tile boundaries, thus smoothing the tile boundaries. We call
VYV-RecFilter with redundancy calculation Redundant-VYV-
RecFilter, and Fig. 10 shows the filtering method of it. As
shown in the figure, we smooth out the tile boundaries by
extending the causal scan to outside of the tile and starting
the anti-causal scan from there.

Here, set parameters are the same as for VYV-RecFilter.
Moreover, the redundancy calculation length is specified 2σ,
which was the most accurate. Figure 11 shows Redundant-
VYV-RecFilter code of recursive Gaussian filter for CPU back-
end. Operator set redundancy specifies a redundant amount of
calculation.

Figure 12 shows outputs of Redundant-VYV-RecFilter, and
Fig. 13 shows result of calculation time and PSNR measure-
ment. The results show that there is not much difference
in the computational time between cases with and without
the redundancy calculation because the calculation cost of
redundant parts is relatively smaller than the other parts. On
the other hand, the tile boundaries are smoothed out, and the
approximation accuracy is improved. As you can see from the
output, the tile boundaries are smoother, even with a large
σ than VYV-RecFilter. However, the approximation accuracy

Redundancy calculation

Anti-causal scan

Causal scan

Fig. 10. Filtering method of VYV-RecFilter with Redundancy Calculation.

RecFi l terDim x (” x ” , image width) , y (” y ” , image height) ;
R e c F i l t e r F (” Gaussian ”) ;
F . set clamped image border () ;

/ / i n i t i a l i z e the I IR p i p e l i n e
F(x , y) = image (x , y) ;

/ / add the f i l t e r s : causal and an t i−causal
F . a d d f i l t e r (+x , gaussian weights (sigma , order)) ;
F . a d d f i l t e r (−x , gaussian weights (sigma , order)) ;
F . a d d f i l t e r (+y , gaussian weights (sigma , order)) ;
F . a d d f i l t e r (−y , gaussian weights (sigma , order)) ;

/ / spec i f y f i l t e r i n g a lgo r i t hm
F . a lgo r i t hm (VYV) ;
F . s e t t o l (t o l) ;

/ / spec i f y the leng th o f redundancy c a l c u l a t i o n
F . set redundancy (2∗ sigma) ;

/ / t i l e the f i l t e r
F . s p l i t (x , t i l e w i d t h) ;
F . s p l i t (y , t i l e h e i g h t) ;

/ / schedule the f i l t e r
F . s e t v e c t o r i z a t i o n w i d t h (vec to r w id th)
F . cpu auto schedule () ;

/ / J IT compile and run
Buf fer<f l o a t> out (F . r e a l i z e ()) ;

Fig. 11. Redundant-VYV-RecFilter code of recursive Gaussian filter for CPU
backend.

decreases with increasing σ. This result is due to the low
stability of the VYV format.

D. Extension of RecFilter Based on Deriche Form

We now extend RecFilter to have Deriche form for further
improving the approximation accuracy. We call this extended
RecFilter Deriche-RecFilter.

The calculation of initial values in Deriche-RecFilter is
the same as a causal scan of VYV-RecFilter, which is a
convolution with the impulse response. As for the calculation
timing of recursive scanning, compute at is specified for all
functions as well as VYV-RecFilter. The main difference from
VYV-RecFilter is anti-causal processing and setting filtering
orders. Especially for the anti-causal processing, we also apply
convolution processing for initialization.

Here, setting parameters are the same as for VYV-RecFilter.
Figure 14 shows Deriche-RecFilter code of recursive Gaussian
filter for CPU backend. Unlike the VYV form, the feed-
forward coefficients in the Deriche format are not always in
order one. Therefore, we overloaded the add filter so that the
feed-forward coefficients of any order can be used.

(a) σ=3.0 (b) σ=15.0

Fig. 12. Outputs of Redundant-VYV-RecFilter.

0

0.5

1

1.5

2

2.5

3

3 13 23 33 43

ti
m

e
[m

s
]

σ

VYV-RecFilter

Redundant-VYV-RecFilter

VYV_AVX

(a) Computational time

28

33

38

43

48

53

58

3 13 23 33 43

P
N

S
R

[d
B

]

σ

VYV-RecFilter

Redundant-VYV-RecFilter

VYV_AVX

(b) PSNR

Fig. 13. Execution result of Redundant-VYV-RecFilter.

Figures 15 and 16 show output images, calculation time, and
PSNR of Deriche-RecFilter, respectively. Deriche AVX, used
as a comparison, is a recursive Gaussian Filter in Deriche form
that was manually optimized for CPU as well as VYV AVX.

The results show that Deriche-RecFilter is faster than
VYV AVX and Deriche AVX, and the filter is stable with
high approximation accuracy. As you can see from the output
(Fig. 15), the processing of tile boundaries, where had a
problem with VYV-RecFilter, could be handled smoothly.
Deriche-RecFilter also shows higher stability above a certain
σ with a similar computational time as Redundant-VYV-
RecFilter. We consider that the low approximation accuracy,
which was a problem with RecFilter, could be solved.

Figure 17 shows the Halide code generated inside Deriche-
RecFilter. For simplicity, only the x-axis filter is described,
and the description of the y-axis is omitted. “Buffer〈float〉
iBuffC” and “Buffer〈float〉 iBuffA” in the Fig. 17 are buffers
for impulse response in a causal and anti-causal scan. These
are pre-computed, and the results are stored in a buffer.
Also, ff c, ff a, and fb are the filter’s coefficients, feed-
forward for causal, feed-forward for anti-causal, and feed-back
coefficient. Furthermore, the scheduling in Deriche-RecFilter
is shown in Fig. 18. Only a causal scan schedule is described
for simplicity, but an anti-causal scan is scheduled in the
same way. Deriche-RecFilter automatically generates these
descriptions and provides a concise description of fast and
accurate recursive Gaussian filter.

RecFi l terDim x (” x ” , image width) , y (” y ” , image height) ;
R e c F i l t e r F (” Gaussian ”) ;
F . set clamped image border () ;

/ / i n i t i a l i z e the I IR p i p e l i n e
F(x , y) = image (x , y) ;

/ / add the f i l t e r s : causal and an t i−causal
vector<f l o a t> coef f fb , coe f f f f causa l , c o e f f f f a n t i ;
/∗ c a l c u l a t e c o e f f i c e n t s from sigma and order ∗ /
F . a d d f i l t e r (+x , coe f f f f causa l , coe f f f b) ;
F . a d d f i l t e r (−x , c o e f f f f a n t i , coe f f f b) ;
F . a d d f i l t e r (+y , coe f f f f causa l , coe f f f b) ;
F . a d d f i l t e r (−y , c o e f f f f a n t i , coe f f f b) ;

/ / spec i f y f i l t e r i n g a lgo r i t hm
F . a lgo r i t hm (Deriche) ;
F . s e t t o l (t o l) ;

/ / t i l e the f i l t e r
F . s p l i t (x , t i l e w i d t h) ;
F . s p l i t (y , t i l e h e i g h t) ;

/ / schedule the f i l t e r
F . s e t v e c t o r i z a t i o n w i d t h (vec to r w id th)
F . cpu auto schedule () ;

/ / J IT compile and run
Buf fer<f l o a t> out (F . r e a l i z e ()) ;

Fig. 14. Deriche-RecFilter code of recursive Gaussian filter for CPU backend.

(a) σ=3.0 (b) σ=15.0

Fig. 15. Outputs of Deriche-RecFilter.

IV. CONCLUSION

In this paper, we improved the RecFilter, a Halide extension
for recursive filtering, to have famous IIR Gaussian filtering
styles, such as Deriche and VYV forms. We had changed ini-
tialization processing to improves the approximation accuracy.
The changed process terminates the dependency between tiles,
and then we can also accelerate the filtering time performance.
We confirmed that our extension performed better with dozens
of code lines than the recursive Gaussian filter, which was
optimized with tens times more code.

REFERENCES

[1] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand. Decoupling algorithms from schedules for easy optimization
of image processing pipelines. ACM Transactions on Graphics, 31(4):1–
12, 2012.

[2] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe. Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In Proc. ACM

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3 13 23 33 43

ti
m

e
[m

s
]

σ

Redundant-VYV-RecFilter

Deriche-RecFilter

VYV_AVX

Deriche_AVX

(a) Computational time

20

25

30

35

40

45

50

55

60

3 13 23 33 43

P
N

S
R

[d
B

]

σ

Redundant-VYV-RecFilter

Deriche-RecFilter

VYV_AVX

Deriche_AVX

(b) PSNR

Fig. 16. Execution result of Deriche-RecFilter.

Programming Language Design and Implementation (PLDI), pages 519–
530, 2013.

[3] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fa-
tahalian. Automatically scheduling halide image processing pipelines.
ACM Transactions on Graphics, 35(4):1–11, 2016.

[4] T.-M. Li, M. Gharbi, A. Adams, F. Durand, and J. Ragan-Kelley.
Differentiable programming for image processing and deep learning in
halide. ACM Transactions on Graphics, 37(4):1–13, 2018.

[5] J. Canny. A computational approach to edge detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–
698, 1986.

[6] D. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[7] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on Pattern Analysis
Machine Intelligence, 20:1254–1259, 1998.

[8] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE
Transactions on Image Processing, 13(4):600–612, 2004.

[9] T. Sasaki, N. Fukushima, Y. Maeda, K. Sugimoto, and S. Kamata.
Constant-time gaussian filtering for acceleration of structure similarity.
In Proc. International Conference on Image Processing and Robot
(ICIPRoB), 2020.

[10] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.
In Proc. IEEE International Conference on Computer Vision (ICCV),
pages 839–846, 1998.

[11] K. He, J. Shun, and X. Tang. Guided image filtering. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 35(6):1397–1409, 2013.

[12] S. Paris, W.S. Hasinoff, and J. Kautz. Local laplacian filters: Edge-aware
image processing with a laplacian pyramid. ACM Trans. on Graphics,
30(4), 2011.

[13] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-
dynamic-range images. ACM Trans. on Graphics, 21(3):257–266, 2002.

[14] K. Sugimoto and S. Kamata. Compressive bilateral filtering. IEEE
Transactions on Image Processing, 24(11):3357–3369, 2015.

[15] N. Fukushima, K. Sugimoto, and S. Kamata. Complex coefficient
representation for iir bilateral filter. In Proc. International Conference
on Image Processing (ICIP), 2017.

[16] K. Sugimoto, N. Fukushima, and S. Kamata. 200 fps constant-time
bilateral filter using svd and tiling strategy. In Proc. IEEE International
Conference on Image Processing (ICIP), 2019.

[17] N. Fukushima, K. Sugimoto, and S. Kamata. Guided image filtering with
arbitrary window function. In Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2018.

[18] M. Aubry, S. Paris, J. Kautz, and F. Durand. Fast local laplacian filters:
Theory and applications. ACM Trans. on Graphics, 33(5), 2014.

[19] R. Deriche. Fast algorithms for low-level vision. IEEE Transactions on
Pattern Analysis Machine Intelligence, 12:78–87, 1990.

[20] I. T. Young and L. J. vanVliet. Recursive implementation of the gaussian
filter. Signal Processing, 44:139–151, 1995.

[21] L. J. van Vliet, I. T. Young, and P. W. Verbeek. Recursive gaussian
derivative filters. In Proc. International Conference on Pattern Recog-
nition (ICPR), 1998.

[22] G. Chaurasia, J. Ragan-Kelley, S. Paris, G. Drettakis, and F. Durand.

Var x ;
Var x i , xo ;

RDom r x i (0 , t i l e w i d t h) ;
RDom rk (0 , K) , r x f (k , t i l e w i d t h−K) ;
RDom rxo (0 , leng th / t i l e w i d t h) ;

Buf fer<f l o a t> iBu f fC ;
/∗∗ ca lc impulse response f o r causal scan ∗∗ /
Buf fer<f l o a t> iBu f fA ;
/∗∗ ca lc impulse response f o r a n t i causal scan ∗∗ /
RDom r t i (0 , iBu f fC . he igh t ()) ;
Expr rx ;

/∗∗ k i s k = 0 , . . . ,K ∗∗ /

Func F in i t causa l ;
rx = t i l e ∗ xo − r t i ;
F i n i t causa l (x i , xo) = i npu t (xo∗ t i l e w i d t h + x i) ;
F i n i t causa l (rk , xo) += s e l e c t (rk>=k ,

iBu f fC (0 , k−1)∗ i npu t (xo∗ t i l e w i d t h +rk−k +1) , 0) ;
F i n i t causa l (rk , xo) += s e l e c t (rk == k ,
sum(iBu f fC (k , r t i)∗ i npu t (s e l e c t (rx<0,−rx , rx))) , 0) ;

Func F f ina l causa l ;
F f i na l causa l (x i , xo) = undef ;
F f i na l causa l (rk , xo) = F in i t causa l (rx , xo) ;
F f i na l causa l (r x f , xo) =
sum(f f c (rk)∗ i npu t (xo∗ t i l e w i d t h + rx f−rk , xo))
+sum(fb (rk)∗ F f i n a l (r x f−rk−1, xo)) ;

Func F i n i t a n t i c a u s a l ;
rx = t i l e ∗ xo + t i l e w i d t h − 1 + r t i ;
F i n i t a n t i c a u s a l (x i , xo) = i npu t (xo∗ t i l e w i d t h + x i) ;
F i n i t a n t i c a u s a l (t i l e w i d t h−1−rk , xo) += s e l e c t (

rk>=k , iBu f fA (0 , k−1)∗ i npu t (xo∗ t i l e w i d t h−rk+k−1) ,0) ;
F i n i t a n t i c a u s a l (t i l e w i d t h−1−rk , xo) +=

s e l e c t (rk == k , sum(iBu f fA (k , r t i)∗ i npu t (rx<length ,
rx , 2∗ length−rx −1 ,)) , 0) ;

Func F f i na l an t i causa l ;
F f i na l an t i causa l (x i , xo) = undef ;
F f i na l an t i causa l (t i l e w i d t h−1−rk , xo) =

F i n i t a n t i c a u s a l (t i l e w i d t h−1−rx , xo) ;
F f i n a l (t i l e w i f t h −1−r x f , xo) =
sum(f f a (rk)∗
i npu t (xo∗ t i l e w i d t h + t i l e w i d t h−1−r x f + rk +1 ,xo))
+sum(fb (rk)∗ F f i n a l (t i l e w i d t h−1−r x f + rk +1 ,xo)) ;

Func F ; / / ouput
F (x) = F f ina l causa l (x%t i l e w i d t h , x / t i l e w i d t h)

+ F f i na l an t i causa l (x%t i l e w i d t h , x / t i l e w i d t h) ;

Fig. 17. Halide code generated inside Deriche-RecFilter.

Compiling high performance recursive filters. In High-Performance
Graphics. ACM Siggraph, 2015.

[23] Y. Tsuji and N. Fukushima. Halide and openmp for generating high-
performance recursive filters. In Proc. International Workshop on
Advanced Imaging Technology (IWAIT), volume 11515. International
Society for Optics and Photonics, 1 2020.

[24] P. Getreuer. A survey of gaussian convolution algorithms. Image
Processing on Line, 3:286–310, 2013.

[25] E. Elboher and M. Werman. Cosine integral images for fast spatial
and range filtering. In Proc. IEEE International Conference on Image
Processing (ICIP), 2011.

[26] K. Sugimoto and S. Kamata. Fast gaussian filter with second-order shift
property of dct-5. In Proc. IEEE International Conference on Image
Process (ICIP), 2013.

[27] K. Sugimoto and S. Kamata. Efficient constant-time gaussian filtering
with sliding dct/dst-5 and dual-domain error minimization. ITE Trans-
actions on Media Technology and Applications, 3:12–21, 2015.

[28] D. Charalampidis. Recursive implementation of the gaussian filter using

F . compute root ()
. s p l i t (x , xo , x i , s p l i t w i d t h)
. s p l i t (y , yo , y i , s p l i t w i d t h)
. reorder (x i , y i , xo , yo)
. v e c t o r i z e (x i , vec to r w id th)
. p a r a l l e l (xo) ;
. p a r a l l e l (yo) ;

F f i na l causa l . compute at (F , xo)
. s p l i t (y , yo , y i , s p l i t w i d t h) ;

F f i na l causa l . update (0)
. s p l i t (y , yo , y i , s p l i t w i d t h)
. reorder (rk , y i , xo , yo)
. v e c t o r i z e (y i , vec to r w id th)
. p a r a l l e l (xo) ;
. p a r a l l e l (yo) ;

F f i na l causa l . update (1)
. s p l i t (y , yo , y i , s p l i t w i d t h)
. reorder (r x f , y i , xo , yo)
. v e c t o r i z e (y i , vec to r w id th)
. p a r a l l e l (xo) ;
. p a r a l l e l (yo) ;

F i n i t causa l . compute at (F f ina l causa l , xo)
. s p l i t (y , yo , y i , s p l i t w i d t h)
. reorder (rk , y i , xo , yo)
. v e c t o r i z e (y i , vec to r w id th)
. p a r a l l e l (xo) ;
. p a r a l l e l (yo) ;

F i n i t causa l . update (0)
. s p l i t (y , yo , y i , s p l i t w i d t h)
. reorder (rk , y i , xo , yo)
. v e c t o r i z e (y i , vec to r w id th)
. p a r a l l e l (xo) ;
. p a r a l l e l (yo) ;

F i n i t causa l . update (1)
. s p l i t (y , yo , y i , s p l i t w i d t h)
. reorder (rk , y i , xo , yo)
. v e c t o r i z e (y i , vec to r w id th)
. p a r a l l e l (xo) ;
. p a r a l l e l (yo) ;

Fig. 18. Scheduling of Deriche-RecFilter.

truncated cosine functions. IEEE Transactions on Signal Processing,
64:3554–3565, 2016.

[29] K. Sugimoto, S. Kyochi, and S. Kamata. Universal approach for dct-
based constant-time gaussian filter with moment preservation. Proc.
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP2018), pages 1498–1502, 2018.

[30] N. Fukushima, Y. Maeda, Y. Kawasaki, M. Nakamura, T. Tsumura,
K. Sugimoto, and S. Kamata. Efficient computational scheduling of
box and gaussian fir filtering for cpu microarchitecture. In Proc. Asia-
Pacific Signal and Information Processing Association Annual Summit
and Conference (APSIPA), 2018., 2018.

[31] L. Lou, P. Nguyen, J. Lawrence, and C. Barnes. Image perfora-
tion:automatically accelerating image pipelines by intelligently skipping
samples. ACM Transactions on Graphics, 35(153), 2016.

[32] N. Fukushima, T. Tsubokawa, and Y. Maeda. Vector addressing for
non-sequential sampling in fir image filtering. In IEEE International
Conference on Image Processing (ICIP), 2019.

[33] A. Ishikawa, N. Fukushima, A. Maruoka, and T. Iizuka. Halide and
genesis for generating domain-specific architecture of guided image
filtering. In Proc. IEEE International Symposium on Circuits and
Systems (ISCAS), 2019.

[34] A. Ishikawa, N. Fukushima, and H. Tajima. Halide implementation of
weighted median filter. In Proc. International Workshop on Advanced
Image Technology (IWAIT), 2020.

[35] B. Triggs and M. Sdika. Boundary conditions for Young–van Vliet
recursive filtering. IEEE Transactions on Signal Processing, 54(5):2365–
2367, 2006.

