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Abstract—Halide is a domain-specific language for image
processing on CPUs and GPUs. The language is powerful for
image processing with deep pipeline, e.g., guided image filtering.
The guided image filtering is utilized for various applications.
Some papers implement the filter on hardware; however, the
implementing hardware and the purposes are different. Hard-
ware implementation is hard; therefore, compiler supports are
necessary. We utilize Halide with extended FPGA backend, called
GENESIS. In our experiment, Halide code with CPU/FPGA
backend is faster than the optimized C++. Also, the code length
of the C++ and Halide for CPU/FPGA is 575, 141, 139 lines,
respectively.

Index Terms—Halide, GENESIS, domain-specific language,
guided image filter, FPGA

I. INTRODUCTION

Approaching the end of Moore’s law, domain-specific hard-
wares/compilers are now focused. Halide [1]-[4] is a domain-
specific language (DSL) for image processing. In the Halide,
we can separate code into an algorithm part and a scheduling
part. We can write how to work image processing in the
algorithm part, and how to compute it in the scheduling part.
Changing only the scheduling, we can optimize the code
for the specific hardware, such as CPU (x86, ARM, MIPS,
Hexagon, PowerPC, Xeon Phi) and GPU (CUDA, OpenCL,
OpenGL).

Traditionally, FPGA design is usually written in hardware
description languages (HDL). The HDL code tends to be much
longer than the code of software programming languages, e.g.,
C/C++. Also, programmers are required in-depth hardware
knowledge for writing the HDL, which is not friendly for non-
experts. Therefore, we extend Halide to have FPGA backend.
We call the compiler GENESIS.

In this paper, we reveal the effectiveness of the program-
ming with Halide with GENESIS for image processing. We
make an application specific integrated circuit for guided
image filtering [5], [6]. The filter is an edge-preserving fil-
tering, and the filter provides much applications, such as
denoising [7], [8], detail enhancement [5], [9], high dynamic
range imaging, haze removing [9], [10], under-water image
processing [11], image matting [5], [12], saliency map estima-
tion [13], upsampling [14], stereo matching and optical flow
estimation [15], [16]. Also, the guided image filter has several
extensions [9], [17]-[21].
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Bilateral filtering [22] is typical edge-preserving filtering.
The filter is a finite impulse response (FIR) filter, and there is
efficient implementation for CPU [23], [24] and FPGA [25],
[26]. The bilateral filtering depends on the kernel radius of
the filter. When the algorithm is tuned for some specific
parameters, the hard coded program has limitation in flexibility
for various parameter. The guided image filtering does not
depend on the kernel radius of the filter; thus, the filter adap-
tively works for various application with adjustable parameter
without changing of circuits. However, the algorithm has a
long image processing pipeline; hence, tuning of the code is
hard without compiler supports.

Some papers implement the guided image filtering on
hardware. The work of [27] implements the filter on ASIC by
Verilog with the double integral image [28]. The work of [29]
constructs the filter on FPGA using the separable summed area
table [30] with approximated computation, and [31] extends
this work. [32] implements fast guided filtering [14] on FPGA.
Most approaches are aimed for grayscale images, and color
image processing requires some algorithm modifications. Also,
the optimal implementation is different for each hardware.
Implementation on hardware is hard even if the difference
from the previous work is small; therefore, compiler supports
are necessary for easiness of development.

In this paper, we describe the tuning for CPU/FPGA to
optimize the implementation with the compiler supports of
Halide and GENESIS. The contributions are as follows:

« Halide and GENESIS code is shorter than the native code.
« We reveal that the optimal implementation of the guided
image filtering CPU and FPGA.

II. BACKGROUND

A. Guided Image Filtering

The guided image filtering converts local patches in an input
image by a linear transformation of a guide image. Let the
guide signal be GG, and it is possible to be G = I, where I is
an input image. The output J is assumed as follows:

Jp = apGp + bi, Vp € wy, @))]

where k indicates a center position of a rectangular patch wg,
and p is a pixel-position in the patch. ag, and by, are coefficients



for the linear transformation. The equation represents the
coefficients linearly convert that guide signals in a patch.
The coefficients are calculated by a linear regression of the
input signal I and (1);
arg min = Z ((axGp + by, — I,)* + ea}). (2)
ak bk =
The estimated coefficients are as follows:
cov (G, I) - ~
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where € indicates a parameter of smoothing degree. “k, covg
and vary indicate mean, variance, and covariance values of
the patch k. The coefficients are overlapping in the output
signals; thus, these coefficients are averaged'
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where |- | indicates the number of elements in the set. Finally,
the output is calculated as follows:

Ji = ;G + b;. )

For color filtering, let input, output and guidance signals be
p = {p', 0% p%}, ¢ (n = 1,2,3), and G, respectively. The
per-channel output is defined as:

Jr=an" Gy + o, (6)
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The coefficients a},, by, are obtained as follows:

ol — covg (G, I™)
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where E is an identity matrix. When the output signal is a
color image, covg is a vector, which elements are covariance
of the patch in I and G. Also, vary, is the variance of the R, G,
and B components, which will be a covariance matrix, in the
patch of G. The matrix division is calculated by multiplying
the inverse matrix of the denominator from the left. We use box
filtering for the calculation results of per pixel mean, variance,
and covariance. The filter with the summed area table [30],
[33] or integral image [34] has O(1) for kernel radii.
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B. Halide

There are several image processing DSL, such as
Halide [1]-[4], and Darkroom [35]. The Halide is a major
DSL for image processing. The language is a pure functional
language and is embedded in C++. The Halide code is modu-
larized as algorithm and scheduling parts This modularization
makes the Halide code flexible. The algorithm parts show
the image processing algorithm, and the scheduling parts
reveal the computational order and computational method, e.g.,
vectorization and parallelization.

Fig. 1 shows the Halide code of 3 x 3 box filtering
for CPU backend. Func indicates equations and Var shows

Func blur_3x3 (Func f)

{
Func blur_x,blur_y;
Var x,y,xi,yi;
// algorithm part
blur_x(x,y)=(f(x=1,y)+f(x,y)+f(x+1,y))/83
blur_y (x,y)=(blur_x(x,y—1)

+blur_x (x,y)+blur_x(x,y+1))/3;
/1 scheduling part
blur_y.tile (x,y,xi,yi,256,32)
.vectorize(xi ,8).parallel(y);

blur_x.compute_at(blur_y ,x).vectorize (x,8);
return blur_y;

}

Fig. 1. Halide code of 3 x 3 box filtering for CPU backend.

Algorithm 1 Halide-like code for guided image filtering.

1 (e, z,y) = e, z,y) x (e, z,y)
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variables. “Func f’ represents an input image, and “Var x,
y” show z and y coordinates of images. In the algorithm
parts, we horizontally average the input image f, and then
vertically mean the averaged image. In the scheduling parts,
computational scheduling is defined for each equation of Func
by calling various class methods, e.g., tile, vectorize, parallel,
and compute_at. tile points image tiling, and the scheduling
splits the image into 256 X 32 tiles. vectorize orders vectorized
computing with SIMD units, e.g., SSE, AVX, and NEON,
and this vectorizes pixels along the = loop. parallel shows
multi-thread computing with multi-core/thread CPU, and the
scheduling parallelize along the y loop. compute_at indicates
how to memorize computed results, and we compute and
memorize “Func blur_x” on x,y in ranged computation of
“Func blur_y” under the schedule. In the default schedule, no
computation is memorized, i.e., all functions are re-computed.

We also show the algorithm of guided image filtering and
box filtering in Alg. 1. The algorithm is written in Halide,




Algorithm 2 Halide-like code for mean (box) filter.
1: val(e, z,y) = input(c, x, y)
2: val(re,rz, ry)+= val(re,rz — 1, ry)
val(re, ra, ry)+= val(re,rz,ry — 1)
3: output = val(c,x + ry +r) — val(e,x —r — Ly +r)
—val(c,x+r,y—r—1)+val(c,e—r—1,y—r—1)

but some lines are omitted for readability. The code con-
tains the map computation, i.e., matrix addition, subtraction,
Hadamard product, and small matrix inversion, and reduction
computation. Each operation has low computational intensity,
and also most of the computation in the naive algorithm
has low computational intensity. Therefore, it is essential for
generating codes with high computational intensity.

III. GENESIS

GENESIS is a DSL compiler. It converts Halide codes
into the Vivado C/C++ code, which can be performed by
high-level synthesis (HLS) for Xilinx’s FPGA. The output
of GENESIS is highly optimized for the HLS compiler by
analyzing and transforming the input code; thus, it is not naive
converting. The transformed code generates a domain specific
architecture to compute a specific algorithm effectively. An
optimization purpose depends on the developer because FPGA
is highly flexible. As a result, searching “’best” architecture in
manual consumes an enormous amount of time. The GENESIS
compiler minimizes the amount of coding and controls the
various factors in performance through scheduling function in
Halide extensions.

A. Strategy of Generating Architecture in GENESIS

It is essential for balancing data I/O performance and com-
puting performance of arithmetic units to maximize hardware
performance. The followings denote the strategy of composing
of the arithmetic and data I/O units.

We can naturally convert the description into arithmetic
units for HLS languages, since the Halide is a pure functional
DSL, and the language can describe operations for multiple
data set without side effect. In GENESIS, we generate fully
pipelined arithmetic units to operate the order for each cycle.
The throughput of arithmetic units can be determined at
compile time since throughput itself depends only on the
number of arithmetic units. The latency of the arithmetic
units is determined at the successive design flow because that
depends on the hardware speed grade, frequency, and wiring
length after technology mapping. unroll scheduling in Halide
can control the number of arithmetic units.

It is complex and important how to implement architectures
for data I/O. The straightforward approach is the typical
memory I/O architecture, i.e., we allocate and fetch data on
the static/dynamic random access memory (SRAM/DRAM)
through the addressable memory bus. There are several issues
in this approach. Firstly, the size of the memory is proportional
to the amount of data size. SRAM is rare resources, and
the current FPGA even has dozens MB. DRAM utilization

mitigates the size issue; however, the memory bus becomes
a bottleneck, since the interface of the DRAM exists in
the outside of the FPGA. Secondly, data reusability is low.
We should access the memory bus every time, even if data
have high spatial locality. We can moderate the issue by
adding memory cache architecture, but it consumes hardware
resources. Finally, we cannot generate pipeline across multiple
processes of memory I/0O. When and where the address in
memory is used is determined at run-time; thus, we should
wait for reading from a data buffer until writing to the buffer
is finished.

One-way streams are efficient design of the data I/O on
FPGA. However, an implementing algorithm does not always
assure the one-way access for data. We combine address anal-
ysis and stream conversion to solve this problem in GENESIS.
At first, we obtain the range of accessing data in the compiling
code by the address analysis. Then, we generate local buffers
consisted of registers and shift memories also based on the
address analysis. This local buffer is optimized for static
addressing, i.e., specific registers, which is statically analyzed,
are connected to arithmetic units by partially connected cross-
bar switches. We can provide data to the arithmetic units by
combining the local buffer and stream I/O. Fig. 2 shows an
example architecture of the I/O stream, which has one input
and one output. GENESIS try to convert data I/O to stream as
much as possible in default. Also, we can control explicitly the
type of I/O by extended scheduling function “hls_interface”.

B. Scheduling Functions in GENESIS

compute_root function modularizes hardware blocks. Arith-
metic units and I/O streams are constructed per this module
as one unit The latency of the system becomes long by fine-
grained modularization, which is realized by issuing many
compute_root schedules. This is caused by the latency of the
bus between modules and local buffer for each module. By
contrast, each function defined by Func with compute_root
scheduling dramatically reduces the size of the local buffer in
the case of multiple pipelined functions, e.g., deep learning.

unroll scheduling affects to how many of arithmetic units are
constructed. The scheduling has an argument. It is the number
of unrolling units. This scheduling improves the throughput of
arithmetic units, but keep that of I/O. unroll is effective when
arithmetic operations are a bottleneck, not data I/O.

hls_burst scheduling adjusts throughput of data I/O. The
scheduling function has arguments for the coefficients in burst
size, and then our compiler determines the width of data bus
based on the coefficient.

IV. DOMAIN SPECIFIC IMPLEMENTATION
A. CPU Backend

Fig. 3 depicts the optimal scheduling for CPU backend.
The schedule computes linear coefficients a, b and then stores
them on memory before output computation by compute_root
scheduling. For computation of the determinant of covariance
covDet, where the computing of the coefficient a, the covDet
value is computed at once and stored the result on memory



Module

Input Local Buffer

Shift Memory ‘

Bus

l Partially connected

Crossbar Switch

ALU Array

Output Local Buffer

A 4

Fig. 2. Microarchitecture for I/O stream.

by compute_at and store_at scheduling. output,a,b are also
scheduled with parallelization and vectorization by parallel
and vectorize methods. For parallelization, we split these
images by split method and then parallelly perform for each
split slice. Besides, we unroll the loop of the color channel by
the unrolling method of unroll with the domain specification
method of bound.

B. FPGA Backend with GENESIS

Fig. 4 shows the optimal scheduling for FPGA backend.
We do not need schedules of splitting the image and then
parallelizing and vectorizing computation for FPGA since
GENESIS fully pipelines arithmetic units as described in
Sec. III-A. The GENESIS extension of the schedule method
simultaneously performs compute_root and bound schedules
for the first argument of Func. Herein, we adjust the compu-
tational timing of Func and also allocate the buffer, which is
required for the computation of Func. The most inner loop
is the color channel, and the dimension is always 3 in the
color image processing. In this case, we unroll arithmetic units
for parallelly processing 24 bit data. Notice that required I/O
becomes larger as the length of the unrolling is longer; thus,
we should adjust the length of the burst of data I/O. The
GENESIS extension of hls_burst expands the width of the
I/O bus as its argument.

In Alg. 1, there is some difference in Y operations for CPU
and FPGA implementation. For CPU backend, we usually use
sum function with RDom ranged variables for the summation.
For FPGA backend, we use sum_unroll, which is extended in
GENESIS, for the same purpose. This function sums up and
then unrolling each operation.

V. EXPERIMENTAL RESULTS

We compared each scheduling for guided image filtering
in CPU and FPGA backend. The input image was 512 x 512
color images. The parameter of the filter is » = 3 and € = 0.04
CPU was Intel Core i7-7800 3.50 GHz compiled with Visual
Studio 2017. FPGA was simulated Xilinx’s ZedBoard.

At first, we optimized C++ code for CPU parallelized by
OpenMP and vectorized by AVX intrinsics. Parallelization

————— Guided Image Filtering
covDet. store_at(a,yo).compute_at(a,y);
a.compute_root ().bound(cx,0,3).unroll (cx)
.split(y,yo,y,16).vectorize(x,4).parallel(yo);
b.compute_root ().bound(c,0,3).unroll(c)
.split(y,yo,y,16).vectorize(x,4). parallel(yo);
output.bound(c,0,3).unroll(c)
.split(y,yo,y,16).vectorize(x,4).parallel(yo);

Box Filter
val.comute_root ().bound(c,0,3).unroll(c)
.split(y,yo,y,16).vectorize (x,4).parallel(yo);
val.update (0).unroll(c).parallel(ry);
val.update(1).unroll(c).vectorize(rx);
.split(y,yo,y,16).vectorize(x,4).parallel(yo);

Fig. 3. Optimal scheduling for CPU backend.

——— Guided Image Filtering
input.hls_burst(3);

schedule (a,{3,3,width, height})
.unroll(cx).unroll(cy).hls_burst(9);
schedule (b,{3,width, height})
.unroll(c).hls_burst(3);

schedule (output,{3,width ,height})
.unroll(c).hls_burst(3);

Box Filter

schedule (val ,{3,width, height})
.unroll(cy).hls_burst(3);

val .update (0).unroll(rc);

val .update (1).unroll(rc);

Fig. 4. Optimal scheduling for FPGA backend with GENESIS extension.

and vectorization were applied for each matrix operation,
e.g., matrix multiplication, addition and subtraction and box
filtering, and matrix inversion. The computational time of the
code was 49.81 ms. The code length was 575 lines.

The computational time of Halide’s CPU backend with the
scheduling in Fig. 3 was 21.04 ms. The scheduling parallelizes
processing with redundant processing; however, that performs
coarse-grained parallelization. On the contrary, the native
C++ code was parallelized in fine-grained, since each matrix
processing is forked and then joined for parallel processing.
The code length of Halide for the CPU backend was 141 lines.

Next, the latency of FPGA is 2100619 cycles. If we assume
that the FPGA’s clock is 510 MHz, the computational time is
14.00 ms on the simulator. Therefore, the FPGA implementa-
tion is 1.5 times faster than the CPU backend. The code length
of Halide for FPGA backend was 139 lines.

VI. CONCLUSION

In this paper, we proposed effective scheduling for guided
image filtering with extending Halide to have FPGA backend.
GENESIS extension for Halide supports FPGA backend well,
and the code for FPGA implementation becomes short. Based
on the tuning flexibility from Halide, the filter is easily
optimized for CPU and FPGA backend. Experimental results
support that the Halide and GENESIS code is shorter than the
native code and the computational performance is also higher.
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