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Abstract—Constant-time bilateral filtering requires recursive
Gaussian filtering for acceleration. An issue of this research is
lower stability in the Gaussian filtering for constant-time bilateral
filtering. The stability problem in constant-time bilateral filtering
is more serious than the natural image filtering case. In this paper,
we clarify where the degradation from the instability and which
constant-time Gaussian filtering is stable for the approximation
of bilateral filtering.

Index Terms—constant-time bilateral filtering, recursive Gaus-
sian filtering, edge-preserving filter, acceleration

I. INTRODUCTION

Bilateral filtering (BF) [1] is edge-preserving filtering, and
the filter is based on Gaussian convolutions of spatial and
range domains. An issue of BF is high computational com-
plexity; thus, many acceleration approaches are proposed. FFT
based approach is a seminal work [2], and its down-sampled
approach [3] further accelerates the performance. Separable
filtering [4], [5] improves computational order from O(r2)
to O(r), where r is filtering kernel radii. Histogram based
filtering [6] makes the order O(1). Constant-time BF [7]–[12]
more sophisticatedly approximates the O(1) BF.

In the constant-time BF, the filter is decomposed into the
product-sum of the outputs of the Gaussian filtering (GF). In
this deformation, the range kernel is approximated by using
a piecewise linear approximation, polynomial approximation
or trigonometric function decomposition. GF can be imple-
mented as radius-independent filtering by recursive represen-
tation [13]–[18]; thus, BF is also filtering radius-independent
in the constant-time BF.

GF is classical filtering, although, it is a fundamental tool of
image processing. Therefore, the acceleration of this filter has
been continuously researched at present. The main difference
from the conventional GF work is that filtering targets are
not natural images. As a result, the stability in the constant-
time BF decreases as compared with the case of natural
images. Therefore, we cannot directly use the optimal GF
implementation for acceleration, and we should focus the
stability of the numerical computation. In the most of the
previous paper of constant-time BF, most verifications are
achieved in Matlab or double floating point precision; thus, this
stability problem has not been outstanding. For further accel-
eration with single precision computing, the stability problem
becomes more conspicuous. Also, narrow range kernel filtering
of BF becomes more unstable. In such cases, filtering for weak
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noise images and depth map/optical flow refinements [19]–[21]
are topical applications.

In this paper, we clarify where the stability problem occurs
and which constant-time GF is stable in many implementations
for the approximation of BF.

II. RELATED WORKS

A. Constant-time bilateral filtering

BF is defined by;

f̃ (p) =

∑
q∈N (p) ws (p, q)wr

(
f (p) , f (q)

)
f (q)∑

q∈N (p) ws (p, q)wr

(
f (p) , f (q)

) , (1)

where S and R are spatial and range domains of images. An
input image is f : S → R and an output image is f̃ : S → R.
N (p) are the set of neighboring pixels of p. ws and wr are
spatial and range kernels, respectively, and are defined by;

ws (p, q) = e
− ∥p−q∥22

2σs2 , wr (a, b) = e
− (a−b)2

2σr2 , (2)

where ∥·∥2 is L2 norm, σs and σr are spatial and range scales,
respectively.

In constant-time BF, the range kernel is approximated by
variables separation. Substituting the approximate equation
wr(a, b) ≈

∑K−1
k=0 ϕk (a)ψk (b) for (1), the results are;

f̃ (p) ≈
∑K−1

k=0 ϕk (f (p))
∑

q∈N (p) ws (p, q) {ψk (f (q)) f (q)}∑K−1
k=0 ϕk (f (p))

∑
q∈N (p) ws (p, q) {ψk (f (q))}

, (3)

where K is the quantization levels of range kernel. Let be
images gk and hk that satisfy the following conditions;

gk (q) = ψk (f (q)) f (q) , hk (q) = ψk (f (q)) . (4)

Considering gk and hk as images, and
∑

q∈N (p) ws (p, q) {·}
as a GF convolution, the constant-time BF is expressed by the
product-sum of the Gaussian convolution with normalization.

B. Real-time O(1) bilateral filtering

Real-time O(1) bilateral filtering (RBF) [7] is a constant-
time BF that separates range kernel wr by a piecewise linear
approximation. Equation (5) is substituted into the separated
range kernels ϕk and ψk.

ϕk (a) = max

(
0, 1− K − 1

Rmax
|a− θk|

)
, ψk (b) = wr (θk, b) , (5)



where Rmax is the Maximum value of range domain, θk is the
quantized range value. Equation (6) is led by to be substituted
for Eq. (4) and (5) into Eq. (3);

f̃ (p) ≈
K−1∑
k=0

ϕk (f (p))

∑
q∈N (p) ws (p, q) gk (q)∑
q∈N (p) ws (p, q)hk (q)

. (6)

Equation (6) shows that the output of RBF calculated by the
piecewise linear interpolation of normalized images generated
from the intermediate images gk and hk.

C. Constant time Gaussian filtering

Multi-dimensional GF can be separated to one-dimensional
GF. Many constant-time GFs [13]–[18] are designed for the
one-dimensional filtering and extend the 1D filtering for higher
dimensions by using the separability. Therefore, we discuss the
one-dimensional GFs.

GF is the weighted average filtering based on the Gaussian
distribution. The simplest implementation is approximating
a Gaussian convolution as the finite impulse response (FIR)
filtering. The correct convolution requires infinite kernel radii,
but FIR filtering cuts off finite radii, such as 3σ or 6σ.
The principal problem with this filtering is the computational
complexity depending on the spatial scale σs; thus, various
methods are proposed to solve this problem．In this paper, we
use the methods with infinite impulse response (IIR) filtering,
and a method using a recursive representation of discrete
cosine transform (DCT) based filtering.

IIR filtering utilizes feedbacks of the outputs to subsequent
processing, and a few taps filter can calculate the influence
of pixels at infinity. More terms filtering can approximate
Gaussian convolution with high accuracy; however, this fil-
tering requires high precision due to the high influence of
numerical computing errors. Since IIR filtering cannot handle
future time, the Gaussian convolution requires forward and
backward passes. There are two ways to connect the forward
and backward filtering, i.e., the series and parallel types. The
series type filters utilize the resulting output of the forward
filtering for backward-pass. The parallel type filters just add
the outputs of the forward and backward filtering in the same
way.

Per-pixel DCT can decompose the Gaussian convolution
into a sum of low-frequency cosine terms. Recursive repre-
sentation of the filter can make this filter O(1) per pixel, such
as box filtering [22]. Note that this filter is not IIR based
filtering, but this filter approximates FIR based GF by stacking
the filtering output of short time DCT.

In this paper, as constant-time GF, we use Vliet-Young-
Verbeek (VYV) [13], [14], [23], Deriche [15], Alvarez-
Mazorra (AM) [16], and spectral recursive GF (SR) [17], [18].

VYV is the series type of IIR filtering. The forward and
backward filters are defined by Eq. (7) and (8).

vvyv (n) = bvyvx (n)−
M∑

m=1

avyvm vvyv (n−m) , (7)

y (n) = bvyvvvyv (n)−
M∑

m=1

avyvm y (n+m) , (8)

where x (n) and y (n) (n = 0, 1, · · · , N − 1) are input and
output signals, avyv and bvyv are the filter coefficients, M
is the filter order and m is the index of the order, respectively.
vvyv is output signals of the forward filtering. VYV can apply
the filter order M = 3, 4, 5 in this paper.

Deriche is the parallel type IIR filtering. The forward and
backward filters are defined by Eq. (9) and (10).

vder+ (n) =

M−1∑
m=0

bder+m x (n−m)−
M∑

m=1

aderm vder+ (n−m) , (9)

vder− (n) =
M∑

m=1

bder−m x (n+m)−
M∑

m=1

aderm vder− (n+m) , (10)

where ader, bder+, and bder− are filter coefficients. vder+

and vder− are output signals of the forward and backward
filtering. The output signals y is summed up of the forward
and backward passes;

y (n) = vder+ (n) + vder− (n) . (11)

Deriche can apply the filter order M = 2, 3, 4 in this paper.
AM is the series type IIR filtering. This filtering consists

of scaling step and filtering steps. First, the scaling step is
implemented in accordance with Eq. (12).

u−0 (n) = λx (n) , (12)

where λ is scale factor. Then, forward and backward filters
are repeated M -times. The forward and backward filters are
defined by Eq. (13) and (14);

u+m (n) = u−m−1 (n) + νu+m (n− 1) , (13)

u−m (n) = u+m (n) + νu−m (n+ 1) , (14)

where ν is a filter coefficient. u+m and u−m are output signals
of the m-th forward and backward filters. The output signals y
equals u−M . The approximation accuracy of filtering is higher
when the filter order M increases. If M is infinity, this filtering
can approximate the Gaussian convolution correctly. In this
paper, we use the filter order M = 2, 3, 4, 5.

SR is DCT-5 based filtering. The Gaussian convolution
can be approximated by a few low frequency cosine terms.
Let direct current components be D and alternating current
components be A. D and A are defined by Eq. (15) and (16);

D (n) =

R∑
u=−R

x (n+ u) , (15)

Am (n) =

R∑
u=−R

cos

(
2π

2R+ 1
mu

)
x (n+ u) . (16)



TABLE I: Computational time and accuracy of various Gaus-
sian filters with various filtering orders.

Method
Single Double

Time [ms] PSNR [dB] Time [ms] PSNR [dB]

VYV (M = 3) 2.29 64.70 4.56 64.88
VYV (M = 4) 2.72 66.75 5.40 73.15
VYV (M = 5) 3.17 39.56 6.28 81.27
Deriche (M = 2) 2.47 40.19 4.69 40.19
Deriche (M = 3) 2.87 59.32 5.56 59.39
Deriche (M = 4) 3.33 81.46 6.43 75.53
AM (M = 2) 2.80 47.65 5.79 47.65
AM (M = 3) 4.08 50.67 8.44 50.68
AM (M = 4) 5.37 52.97 11.10 52.97
AM (M = 5) 6.65 54.81 13.84 54.81
AM (M = 100) 129.23 80.92 269.01 80.90
SR (M = 2) 0.83 77.86 2.89 77.87

The output signals y is the convolution of these components
represented by Eq. (17);

y (n) = β

(
D (n) +

M∑
m=1

αmAm (n)

)
, (17)

where α and β are the filter coefficients and R is a truncation
radius of filtering. The shift property of DCT enables us to
recursively compute D and A at an R-independent cost. We
implemented this filter with the filter order M = 2 and the
truncation radius R = ⌈3σ⌉.

TABLE I lists filtering computational time and accuracy of
each method under the spatial scales σs = 10. Single and
double represent the precision of floating point number that is
used for filtering. The test image was a grayscale (768×512)
image. The filters are vectorized by SSE and implemented by
a single thread. The constitution of the test environment is
Intel Core i5-7500 3.4 GHz (4 threads). The ideal output is
the output of FIR based GF that is truncated with ⌈6σs⌉ and
is implemented with double precision.

TABLE I shows that the implementation with single pre-
cision is suitable for acceleration than the double precision
one. When the same filter order, the filter is faster in the order
of SR, VYV, Deriche, and AM. In all filtering method, the
filters are fast when the filter order is small, and the filters
have high accuracy when it is large. Note that VYV (M = 5)
implemented with single precision is a low accuracy due to
the high influence of numerical calculation error.

III. UNSTABLE CONDITION OF CONSTANT-TIME
BILATERAL FILTERING

GF includes the approximation error and the numerical
calculation error. GF in constant-time BF is more easily influ-
enced by the numerical calculation error than the natural image
filtering case. The effect of the approximation error is slightly
buried due to the approximation of range kernels of bilateral
filter, which causes large errors. Therefore, constant-time BF
generates dedicated errors in low precision computing, such

Fig. 1: Example of the dedicated errors in constant-time BF
in single precision.

as Fig.1. We discuss the cause of the noise in constant-
time BF. In constant-time BF, we apply GF to intermediate
images gk, hk defined by Eq. (4). These images are weighted
by ψk; thus, the dynamic range of them is larger extensive
than the natural image. In the processing of such a wide
dynamic range, the small value is easily influenced by the
errors. Also, normalization by the small range value further
amplifies the errors. As a result, the constant-time BF easily
cause by numerical errors. Figure 2 is an example of the profile
curves of Gaussian filtered intermediate images gk, hk, and a
normalized image ḡk/h̄k. ·̄ indicates Gaussian filtering output.
The horizontal axis is index columns, and the vertical axis is
the range value. Noisy signals in the normalized image have
small range values in the intermediate images. A small range
scale σr generates an intermediate image with a wide dynamic
range; thus, the smallness of the range scale is the cause of the
noise. This noise is due to the smallness of range weight ψk.
The range weight ψk becomes small when there is the large
difference between the quantized range value θk and the range
value of the input image. Increasing the quantization levels K
reduces the gaps between the quantized range value θk and
the range value of the input image. Therefore, we can depress
the generation of noise in the output by increasing the number
of intermediate images.

IV. EXPERIMENTAL RESULTS

We examined the constant-time GF from two aspects. In the
first experiment, we examined which methods of constant-time
GF has high stability in the constant-time BF. In the second
experiment, we examined which methods of constant-time GF
is efficient in accuracy and speed for the constant-time BF.

In the first experiment, we used RBF implemented with the
constant-time GF listed in TABLE I. The code is written in
C++ (Visual Studio 2015), and OpenMP is used for paral-
lelization for the each intermediate image. The test image was
grayscale Kodak test images, whose resolution is 768 × 512.
We compared the output of RBF based on each GF with the
correct image. The correct image is the output of the naı̈ve
FIR implementation of BF with double precision 3σ. We use
Intel Core i5-7500 3.4 GHz (4 threads). The noise may not be
detected by only PSNR metrics as shown in Fig. 3. Therefore,
we also evaluated the noise by using the max error in the
whole image pixels. Figure 4 shows the relationship between
the number of intermediate image pairs and the accuracy of the
output image. The left side plots indicate PSNR and the plots
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(c) Normalized image generated from gk, hk .

Fig. 2: The profile curves of Gaussian filtered intermediate
images gk, hk, and a normalized image (ḡk/h̄k).

(a) Output image (b) Zoomed noisy region

Fig. 3: Filtering output with noise caused by unstability.
PSNR (54.60 dB).

of the other side indicate the max error. Filter methods are
VYV (M = 4), Deriche (M = 3), AM (M = 2), SR (M = 2,
single), and SR (M = 2, double). SR (M = 2, single) and
SR(M = 2, double) are the results of SR implemented with
single and double precision. The results show that increasing
the number of intermediate image pairs improves stability.
Also, the results show that constant-time BF easily generates
the noise when the range scale σr is small. The number of
the intermediate images indispensable for suppressing noise
is less in the order of AM (M = 2), Deriche (M = 3), SR
(M = 2, double), SR (M = 2, single), and VYV (M = 4).
This result shows that the constant-time GF used in constant-
time BF has high stability in this order. On the other hand,
the filtering time is short in reverse order except for VYV.
Therefore, it is essential to consider the trade-off between the
time and stability.
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Fig. 4: Accuracy of filtering output w.r.t. the number of pairs
of intermediate images.

In the second experiment, we examined which methods
of constant-time GF is efficient for the constant-time BF.
Figures 5, 6, and 7 show the relationship between filtering
time and accuracy of RBF. We drew a line with PSNR 50 dB
and error value 20 as a line showing a sufficient accuracy.

Figure 5 shows VYV (M = 5) is a low accuracy due to
the influence of the numerical calculation error. Also, Fig. 5b
shows VYV (M = 3) is unstable when the small range scale
σr. The filter order 4 is the most stable parameter for VYV.

Figures 6a and 6b show Deriche (M = 2) and Deriche
(M = 4) are unstable when the small range scale σr. The
filter order M = 3 is the most stable parameter for Deriche.

Figure 7 shows AM is stable on all filter orders. Considering
the time and accuracy, the filter order M = 2 is the most
efficient parameter for AM.

Figure 8 shows the relationships between the accuracy and
time of each filter method; specifically, filter methods are VYV
(M = 4), Deriche (M = 3), AM (M = 2), SR (M = 2,
single), and SR (M = 2, double). When small range value,
the methods are stable with fast computation in the order AM
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Fig. 5: Accuracy and filtering time (VYV).

(M = 2), SR (M = 2, double), Deriche (M = 3), SR
(M = 2, single), and VYV (M = 4) . If a low accuracy
is acceptable, AM (M = 2) or SR (M = 2, double) is
efficient. In the environment that is impossible to implement
with double precision, such as consumer GPU computation,
Deriche (M = 3) is also suitable. For the other case, SR
(M = 2, single) is the most efficient of these filters.

V. CONCLUSION

In this paper, we showed the cause of the noise in the
constant-time BF. The main reason is that errors of GF tar-
geting the wide dynamic range image and is the amplification
of the errors by normalization generates characteristic noises.
The constant-time BF has low stability when the range scale
σr is small, and we can stabilize this filter by increasing
the number of the intermediate images. The constant-time GF
used in the constant-time BF has high stability in the order of
AM，Deriche, SR, and VYV. On the other hand, the filtering
time is in reverse order; therefore, a trade-off between time
and stability is essential. If a low accuracy is not a problem,
AM (M = 2) or SR (M = 2, double) implementation is
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Fig. 6: Accuracy and filtering time (Deriche).

efficient in the smaller cases. If the double precision cannot
be used, Deriche (M = 3) is also suitable. In the other case,
SR (M = 2, single) is the most efficient of these filters.
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